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1.0 EXECUTIVE SUMMARY

This report presents the results of research and development efforts of Task 1, Phase

2 of a general project entitled "I'he Development of a Program Analysis Environment for

Ada." The scope of this task was defined early in Phase 1 (initiated June 1, 1988) to include

the design and development of a prototype system for testing Ada software modules at the

unit level. The system was called Query Utility Environment for Software Testing of Ada

(QUEST/Ada). The report for Task 2 of this project, entitled "Reverse Engineering Tools

for Ada Software," is given in a separate volume, since the documentation of Task 1 and

Task 2 are being conducted independently.

Phase 1 of this task completed the overall QUEST/Ada design, which was subdivided

into three major components, namely: (1) the parser/scanner, (2) the test data generator,
and (3) the test coverage analyzer. A formal grammar specification of Ada and a parser
generator were used to build an Ada source code instrumenter. Rule-based techniques
provided by the CLIPS expert system tool were used as a basis for the expert system. The

prototype developed performs test data generation on the instrumented Ada program using
a feedback loop between a test coverage analysis module and an expert system module. The

expert system module generates new test cases based on information provided by the

analysis module. Information on the design is given in the Phase 1 Report, dated June 1,

1989, and these details will not be repeated here.

The current prototype for condition coverage provides a platform that implements

expert system interaction with program testing. The expert system can modify data in the

instrumented source code in order to achieve coverage goals. Given this initial prototype,

it is possible to evaluate the rule base in order to develop improved rules for test case

generation. The goals of Phase 2 were the following:

. To continue to develop and improve the current user interface to support the other

goals of this research effort (i.e., those related to improved testing efficiency and

increased code reliability),

e To develop and empirically evaluate a succession of alternative rule bases for the test

ease generator such that the expert system achieves coverage in a more efficient
manner, and

. To extend the concepts of the current test environment to address the issues of Ada

concurrency.

The remainder of this summary will briefly describe the progress in accomplishing these
goals according to the order given in the report.

A major literature review was conducted with regard to the testing of code which

supports concurrency. This is given in Section 2 of the report organized according to the
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major issues within concurrency testing. Significant articles were found in the areas of: (1)

static analysis, (2) task monitoring, (3) testing/debugging, and (4) improving the efficiency

of the analyses (optimization). The literature review clearly revealed that static analysis is

expensive to perform on complex tasking programs. However, if the amount of tasking used

is simple and easily managed, static analysis can be used to provide an initial knowledge of

the task state space.

A second major finding of the literature review was that a run-time monitor, possibly

with task scheduling capabilities, should be integrated into the design of QUEST/Ada. Task

monitoring is essential in studying concurrent tasks. This requires transformation of the

original program into a new program that calls the task monitoring prior and after tasking
activities. While this is analogous to instrumentation, the issue of test data generation is

complicated by concurrency. In addition to path coverage, concern must be with concurrent

history coverage, since the same input space could produce different outputs when executed

through different concurrent histories.

The literature review also revealed that the main advantage of concurrency analysis

is that it provides insight into the tasking interactions with concurrent programs. By using
the monitor task and by examining the potential concurrent histories, many tasking logic
errors can be identified. However, the major errors that the analysis purports to find,

rendezvous deadlock and shared variable parallel update, would not occur in an Ada

program that uses Ada's advanced tasking features that were especially designed to avoid

these problems. As the design extension to accommodate concurrency evolves during the
second half of Phase 2, strong consideration will be given to adopting a practical view of

concurrency as it is currently being applied to NASA applications.

The prototype developed in Phase 1 has continued to evolve in order to collect data

to determine the viability and effectiveness of the rule-based testing paradigm. This

prototype consists of five parts, which are discussed in Section 3 of this report. Special

emphasis has been given to the Test Data Generator (TDG), the expert system designed to
select the test data that will be most likely to drive a specific control path in the program.

Four types of rules have been used in the development of the TDG: random, initial, parse-

level, and symbolic evaluation. Random rules provide base data for the more sophisticated

rule types to manipulate. _ rules generate simple base data from the information

supplied from the parse. Parse-level rules, which are more sophisticated, rely upon the

coverage table and best-test-case list developed by the Test Coverage Analyzer. Symbolic
evaluation rules extend this concept by representing each section of the program as an

abstract function. The symbolic evaluation rules utilize the coverage table and the symbolic

boundary information provided by a symbolic evaluator.

The more sophisticated rule types rely on the Test Coverage Analyzer (TCA), which

has had to undergo corresponding modification. The TCA provides two major functions:

maintaining the coverage table, and determining the best test case for every decision. This

information is used by the parse-level and symbolic evaluation rules to determine which

2
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decisions or conditions need to be covered to provide complete decision/condition coverage.
The best test case for each decision is determined by a mathematical formula describing the

closeness of a given test case to the boundary of a specific condition. The test data

generator rule bases modify the best test case to attempt to create new coverage in the

module under test.

Work has also been initiated on a Symbolic Evaluator (SE), which uses detailed

information about the source code being tested to attempt to represent each path through

the code as an abstract function. The work of the symbolic evaluator is divided into two

parts -- developing and evaluating symbolic expressions. Using descriptions of the conditions
in the module under test provided, the SE develops symbolic boundary expressions in which
each of the variables in a condition is represented in terms of the other variables. After

developing the symbolic boundary equations, the SE evaluates them using the test data as

it appears at the time the condition is executed.

Finally, a data management facility has been added to the prototype to simplify the

user interface and report generation functions. This facility, known as the Librarian, is

designed to be portable so that a user interface can be developed on several machines by
accessing the librarian in a similar fashion. Additionally, the Librarian acts as a data archive

so that regression and mutation testing may be implemented using previously generated test

cases.

Section 4 of this report presents progress made in considering concurency testing.
In Section 5 the results of the evaluations which were performed in the second half of this

phase are discussed. These results demonstrate the validity of the rule-based approach
toward test ease generation in that a comparison between each successive set of rules was

performed as they evolved. Section 6 presents a review of the project schedule and the
anticipated results from Phase 3 of the project. The appendices present supplementary

programs as well as the text of several papers that have been published or submitted for

publication as a result of this research.

2.0 LITERATURE REVIEW: CONCURRENCY TESTING

2.1 OVERVIEW OF THE LITERATURE REVIEW

This chapter of the report summaries the literature review which concentrated on

concurrency testing. It makes frequent reference to the bibliography of collected papers,
which is contained in Section 7. The first subsection is a brief summary of significant

articles, which begins with static analysis, moves on to dynamic task monitoring, covers other

testing/debugging topics, and then ends with notes on optimization of the analysis. A

3



m
second subsection goes into considerable detail on these respective topics. Note that a more

general literature review on software testing is given in the Phase I report.

2.2 SIGNIFICANT ARTICLE LIST

w

w

2.2.1 STATIC ANALYSIS

Generally, static analysis leaves much to be desired. This is particularly true when

concurrency is involved. Static analysis has highly restrictive rules stemming from its

inability to deal with dynamic tasks or subscripted references to tasks. Also, it requires the
consideration of an extremely large sample space (this is especially seen in Taylor's work).

The analysis of large amounts of tasking information consumes a huge computational

overhead. Static analysis is usually best for finding relatively simple mistakes which probably

would not occur in code created by professionals who use Ada's advanced tasking features.

Significant articles on static analysis related to tasking include:

[Tayl80] This is a precursor to [Tay183b], in which errors are detected in a program via

data flow analysis. The language considered is a derivative of HAL/S. Taylor

later criticizes this paper for (1) not using Ada as the target language, and (2)

not having sufficient generality.

[Tay183b] This article presents an algorithm for analyzing concurrent tasks. While the

algorithm has its faults, it is recognized as the standard for an introductory

approach to static analysis of concurrent programs.

[Tay188] This is an extension of [Tay183b]. In this paper, Taylor presents methods to:

(1) make the sample space considered by his algorithm more "correct" via

symbolic execution, and (2) optimize the selection of the sample space for the

algorithm.

[Cai189] This paper focuses on the creation of a data flow framework based on the

analysis of programs for the following constructs: synchronization, sequential

execution, data dependence, and execution order.

[Stran81] An approach is presented which uses language theory to help create a static

notation for inter-process communication for keeping track of tasking activity.

[Mura89] "Petri net invariants" are employed to detect Ada deadlocks statically.

4



2.2.2 TASK MONITORING

The field of task monitoring has developed into a useful tool. This approach requires

that the source program be transformed into a new program with embedded calls to a run-

time monitoring task. This monitor can detect deadlock before it occurs and can provide

a tasking event history to trace what occurred to cause an error in the program. Tracing is
also used to note the history of "correct" execution. The biggest concern with monitoring

is making sure that the modified program is computationally equivalent to the original

source program and that the translation does not conceal potential errors. A number of

task monitors have been implemented for Ada. Suggested references include:

[Helm85] An Ada tasking monitor implementation is presented.

[Chen87] The EDEN execution monitor for Ada tasking programs is reviewed.

[Gait86] This paper reviews the probe effect, i.e., the insertion of time delay calls into
the code. If variation of duration of these time delay probes cause the

program to act differently or to produce different results, then it can be
reasoned that in all likelihood the program is highly dependent on the timing

of its execution. Note that the introduction of probes can also be used to

"force" crude scheduling.

[Germ84] The three main topics considered by this paper are: correctness of program
transformation into a monitored program, the duties of the monitor task, and

a method for producing unique task identifiers.

m_

2.2.3 TESTING/DEBUGGING

The testing of concurrent programs involves much more than just providing a test set

of data. Due to the nature of programs executing concurrently (or in parallel), different

results may be produced for the same test set of data. Therefore, in addition to testing the

concurrent programs, there must be a way to establish the execution sequence if the

programs are to be tested effectively. Before this synchronization of execution can be

developed, however, the underlying concurrent structure of the tasks has to be understood.

It is imperative that testers be able to study the results of a test set. Monitoring,

therefore, is a precondition to concurrent program testing, since the output of the task

monitor allows post analysis of the test data performance. The following references apply:

[Tai85] The problem addressed is that of a concurrent program producing different
results when executed multiple times with the exact same input. The concept

of an finding test cases to establish synchronization is presented.

5



[Gold89]

[Hseu89]

This paper establishesthat concurrency activity can be divided into language-

specific and language-independent categories. Information gathered by a run
time monitor can be studied off-line to gain insight into the behavior of the

concurrent programs.

The concept of concurrent data path expressions is presented. Their goal is
to aid in the revelation of the underlying concurrent interrelations in a set of
tasks.

L
m

[Brin89] The main focus of this paper is the development of a debugger for testing
Ada tasking programs. It makes several interesting points in stating the

requirements for transforming a program into a state that allows: (1) control

over the sequence of execution of the program and, (2) investigation into the

current status of the program during execution.

[Ston89] The concurrency map representation is presented to aid in the understanding
of the interrelations between concurrent tasks.

2.2.4 OPTIMIZATION OF ANALYSIS

The implementation of Taylor's simple static analysis algorithm for concurrent tasks

has the unfortunate property of combinatorial explosion. The analysis theory itself, however,

can be augmented with a number of optimization rules to limit the amount of space that has

to be considered by the analyzer, thus reducing the amount of output. Optimization also

strives to prune out generated concurrency states that, although theoretically possible,

cannot occur due to the logic of the program.

Taylor [Tay183b, Tay188] presents both the static analyzer and the methods to

improve the analyzer. The methods include: (1) reducing the amount of tasks considered
at a given moment (parcelling), and (2) employing "run-time" scheduling to decide which

states are not possible.

2.3 DETAILED SURVEY OF THE LITERATURE

r_

2.3.1 INTRODUCTION

When considering the literature on the test of code involving concurrency, issues arise

in addition to those established in classical testing theory. In addition to detecting faults

common to non-concurrent code, three major goals emerge: (1) find possible deadlocking,
(2) find possible shared variable parallel access/update, and (3) test the program through

different concurrent states. The following subsections address the literature on concurrency

6
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testing by organizing and summarizing it into six classifications. First, the representation of
concurrency is considered in terms of the different modeling schemes employed. Then

static concurrency analysis will be discussed in terms of its advantages and drawbacks as

well as the different modeling schemes which exist.

Symbolic execution will be considered next, and the reasons for and results of its use

will be given along with the overall scheme employed. At that point, task monitoring/inter-
action will be defined in terms of its capabilities and the problems involved in using it. This

will set the stage for the major works on testing concurrent programs, in which the following
issues will be considered: (1) How is data generated for symbolic programs? (2) What

should be saved from one generation of results from a test? (3) Given previous test cases,

what should be saved to modify the next test case? and (4) What static analysis results are

required for dynamic analysis? In a final subsection conclusions from the literature review
will be summarized as they apply to the current project.

2.3.2 REPRESENTATION OF CONCURRENCY

Taylor's [Tay183b] method produces all possible task state transitions for a number
of active tasks. First, Taylor requires a specialized version of the program state graph whose

nodes are related only to tasking (states that involve no tasking are coalesced). Taylor's

algorithm then proceeds from the main task's beginning and puts all possible next states
onto a stack. A state is popped off of the stack, and all the possible next states for it (if

any) are put on the stack. The algorithm proceeds until the stack is empty. Note that a

record of the duplicate states is maintained so that infinite state loops are avoided.

Taylor defines the following as significant task events: (1) Entry call, (2) Accept
statement, (3) Delay statement, (4) Abort statement, (5) Task declaration, (6) Declaration

of data type or object containing a task, and (7) Operation on objects shared by tasks. To

generate the possible task states a program can execute, the following are used as the basis:

Program Call Graph: subprogram invocation structure, which indicates the
subroutines each unit can call and the subroutines which can call each unit;

and

Pro_re'am Scope Information: nesting (hierarchical structure) of the program's
constituents.

The following definitions are useful in understanding Taylor's work:

S The program under test.

UNIT Made up of elements, i.e., procedures, functions, tasks, and
blocks contained in S.

7



U The number of elements in the UNIT, IUNIT[.

Call Graph(S) The call graph of program S, CG(S), consists of nodes P and
directed arcs I that represent the potential for invocation within

the program S. There is a direct relationship between the Pi
nodes of P and the elements of UNIT. The arc (Pi,P:) exists

within I iff the unit Pi can invoke the unit PJ" Invocation may
occur if:

(1) pj is a subprogram that Pi may call, or

(2) pj is a block inside pi's body.

TASKS The set of all tasks t, comprises program S. TASKS is a subset

of UNITS. The main program is counted as a task.

T The number in TASKS, ITASKS].

T' The number of distinct tasks in S; T' might be greater than T

for a program that has tasks declared in re-entrant/recursive

subprograms.

Flowgraph This is the directed flowgraph representation of S.

{G1, ..., Gu} The set of flowgraphs for S, where U = IUNITI.

Gi Defined as (Ni, Ai., ri), this represents the flowgraph for a given

individual unit within program S.

N i The set of nodes in G i (represents a tasking event).

& The set of arcs in G i (representing flow of control from Ni).

ri in N i The root node for the particular unit's flow.

Given these building blocks, the remainder of the analysis is concerned with finding the
successor nodes for each state node in the flowgraph (a state node is one which performs

a tasking-related activity). The set of successors for a given node are essentially those nodes
in the flowgraph from which an arc emanates to the given node. The following definitions

help in understanding the concurrency and successor concurrency states:

C A concurrency state, which is an ordered T' tuple (c 1, c2, ..., C-r), where

each q is either a state node of a flowgraph Gj or inactive. This can
be considered a snapshot of the states of all possible tasks in program
S.

8
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9 A successor concurrency state to C (there is generally more than one).
There can be a successor if:

(1) For all i, 1 < = i < = T', either:

(a) c' i in succ(ci),
(b) c' i - ci,

(c) q = inactive and c'i = begin task, or

(d) ci = end task and c' i = inactive, and

(2) There exists at least one c':, 1 < = i <- T', which represents
application of case (a), (b), _r (d) above (thus requiring forward

movement).

Given the definition for a currency state and the method for determining valid

successor states, all possible concurrency states can be found for program S. Note that an
individual instance of task states through a single execution of program S is called a

concurrency history. This is further defined by the following:

CH(S) Concurrency history of program S that is a sequence % c2, ..., ck of

concurrency states such that:

(1) c 1 = (begin < <MAIN> >, inactive, ..., inactive), and
(2) For all i, 1 < = i < = k, el+ 1 in succ(ci).

PH(S) Proper concurrency history for program S; an instance of a concurrency

history for program S with the following restrictions: (1) the length of

the history, k, is finite, (2) all of the states of the history are unique,

and (3) the history is devoid of loops.

H(S) A set of all possible PH(S). This is the goal of the analysis: a

collection of all possible progressions through the task states. Note

that this represents distinct multiple executions of the program S.

Once H(S) has been generated, the concurrency states can be used for static analysis.

While Taylor's work must be considered the standard with regard to concurrency
representation, Stone [Ston88, Ston89] has contributed the concept of time-line diagrams,
where each task is represented as a line, and points on the line are tasking events. The
lines are set up in parallel to one another and dependencies between tasks are shown by a
directed arrow from one task's point to another task's point.

Stone also presented the concept of a concurrency map. Some task's events are

unrelated, and the timing of their execution is unimportant. Some parts of a concurrent

program, however, are time dependent and are known as interprocess interaction.

According to Stone:
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"nae concurrency map expresses potential concurrency, and is both a data
structure for controlling replay and graphic method of representing concurrent

processes. The map displays the process histories as event streams on a time

grid. Each column of the grid displays the sequential event-stream of a single

process. The row represents an interval of time, and the events that appear
in different columns in that row can occur concurrently." [Ston89]

Thus, the concurrent program is represented on two axis within the concurrency map.

One axis (columns) represents a thread in the program, while the other axis (rows)

represents forward movement through time. The event-stream (a program task) is made up

of dependence blocks. Dependence blocks may have predecessor states which must occur
in other tasks before the block may execute, and they may end with a successor state,

signalling other event streams so that they can proceed. Also, normal non-concurrent
related code can occur before and after a dependence block.

The rows that make up the concurrency map (associated with time) consist of

concurrent events which all must complete before the next row can be entered. A block

may extend over more that one row. Time dependencies are shown in the map by an arrow

starting at the end of one block and pointing to the beginning of another. The event-stream

blocks may "float" up and down through time, as long as the extent of the movement through

time does not go before or after any time dependencies associated with the block. This

floating is know as map transformation. Three useful properties associated with map
transformation are:

(1)

(2)

(3)

The collection of transformations of a map shows all the multiprocess event orderings

that are consistent with the given time dependencies;

If two events in different processes are potentially concurrent, then there is a

transformation of the map in which the two events appear in the same row; and

The map constructed from the process histories and the known dependencies is

adequate in the sense that it represents all possibilities for concurrency.

Finally, in section three of the paper, it is demonstrated how the concurrency map could be

used to represent a message-passing concurrent system such as is the case with Ada. Also,

Franscesco [Fran88] presented a rather complex algebraic description of a tool for specifying

and prototyping concurrent programs.

2.3.3 STATIC CONCURRENCY ANALYSIS

Taylor's work on concurrency representation extended into the static analysis of

concurrent programs [Tay183b]. Given the output of the task state generator algorithm,

concurrent tasks can be analyzed for either deadlock or for parallel update of shared
variables. Goals set for the static analysis include accuracy, minimization of superfluous

error reports, and efficiency. Taylor notes the short-comings of static analysis:

10



(1)
(2)
(3)

inability to deal with referencing tasks by subscripting or pointers,
DELAY statements cause timing problems that cannot be resolved statically, and

dynamic task creation can cause an infinite number of ways to interpret program
execution.

The following is summary of static concurrency analysis [TAYL88]:

"Static concurrency analysis builds a rooted directed graph of concurrency states. A

concurrency state summarizes the control state of each of the concurrent tasks at

some point in an execution, including synchronization information, while omitting
other information such as data values. Directed edges in the concurrency state graph

indicate which states may follow each other in executions of a program. A path from

the root node to any node in the graph is called a concurrency history since it

captures a sequence of synchronization events that may occur in a program
execution."

Taylor defined various sets containing concurrent action inter-relations. A
concurrency history is one instance of a state transition through the program. If the history

ends with tasks still active (perhaps waiting in an ACCEPT), then a deadlock state has been
found. Individual states can be examined to see if two tasks can access/update a shared

variable at the same time.

Taylor [Tay188] stated that the main weakness of static analysis is that it can result
in erroneous states -- task states that could not happen due to the logic of the program.

These superfluous states can generate error messages for events that will not occur at run
time. He presented a method in which static analysis and symbolic execution could be

teamed together, which will be described in more detail below. In an earlier paper

[Tay183a] Taylor showed that analysis of concurrent programs is NP-hard. He also did some

more general work on static anomaly detection [Tayl80].

Murata [Mura89] used Petri Nets as a static analysis tool to detect deadlocks in Ada

programs. CaUahan [Ca1189] presented some results involving the static analysis of low-level

synchronization. Stranstrup [Stran81] and many others (see his references) performed some

analyses of concurrent algorithms; however, the relationship between this work and that of

testing concurrent programs is questionable.

2.3.4 SYMBOLIC EXECUTION

As introduced above, Taylor [Tay188] has noted that static analysis alone is prone to

be deficient. It generates all possible task state transitions, and therefore might generate
task states that could not occur given the logic of the program. Therefore, he suggests an

interaction between symbolic execution and static analysis, allowing one of them to work on

the program for a while and then having the other take over. Symbolic execution is used
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to prune the information static analysis generates. The two techniques can be combined in

two ways: serial and interleaved.

In the serial application, static concurrency analysis is run first. After completion,

all nodes that imply an error condition (deadlock or parallel variable update) are marked

as "interesting." All of the ancestors of the interesting nodes are marked as "promising."

Symbolic execution then produces its own graph. Promising states not existing in the

symbolic execution graph are thrown out. Matching interesting states are marked as

feasible. The process continues until either (1) all interesting nodes are marked feasible,

(2) no more advancement can be made down a promising path, or (3) some resource (e.g.,

CPU time) has been exhausted.

When the two techniques are interleaved, one advances until it times out or until it

requires the analysis of the other to advance. Static analysis begins and continues until

either a possible error state is encountered or until some maximum number of nodes have

been generated. Nodes on the "frontier" of static analysis are noted as being interesting,

their ancestors being promising. Symbolic execution then takes over. Analysis is performed

down only promising paths, with each node encountered under symbolic execution being

changed from promising to feasible. When a node is reached with no children, analysis is

suspended for later (in the event this node will indeed develop promising children). When

static analysis resumes, it only processes those paths marked as feasible and promising.

Static concurrency analysis can be used to detect infinite waits as well as simulta-

neous updates of shared variables. By intertwining static analysis with symbolic execution,

impossible conditions that would otherwise cause error messages can be avoided. Taylor
•recognized the weaknesses of using regular static analysis in dealing with dynamic objects,

arrays indexed by expressions, and pointers. For static concurrency analysis, the following

are problems:

.

2.

3.

4.

Arrays of tasks;
Arrays of records that contain a task type as a member;

Pointers to tasks;

Recursiveness involving tasks.

With respect to complexity, Taylor has written a paper showing that static

concurrency analysis is NP-hard. Given the basis of Taylor's work, the following approach

is inferred in attempting to test concurrent programs:

.

2.

.

Find a representation for tasking activity in the program,

Inter-relate static analysis with symbolic execution to remove impossible error

states that are prone to manifest themselves in the concurrent static

representation, and
Attempt to adaptively reduce the amount of space to be studied.
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2.3.5 TASK MONITORING/INTERACTION

A major weakness of static analysis is that it requires consideration of all possible

tasking states. This involves a huge amount of information to generate and to analyze. It
also has certain restrictive rules which it applies to the sample space it can consider (e.g.,

no dynamic tasks). A task monitor is a run-time supervisor that keeps track of the

concurrency-related states of the various tasks. By constantly analyzing the states of the
task, it can detect when deadlock has occurred (or will occur), or when a variable can be

accessed/updated in parallel. A monitor requires a preprocessor on the source code to
insert calls to the monitor task.

The use of a monitor task is not without its problems. It may not provide an

absolutely correct representation of the current tasking states. Introducing a monitor results
in an overhead that may modify the program in such a way that certain errors will not be

detected (a problem that does not exist in nonconcurrent testing). Also, there is difficulty

in finding an easy representation for identifying a task for reports presented to the user.

Another use of a task monitor is to simulate discrete scheduling. Given static

analysis output of all the possible tasking state transitions, this monitor could try to delay
individual tasks in such a way that they progress according to a given concurrency history.

Taylor [Tay188] stated that a run-time supervisor is needed to make sure all possible task
states are traversed. The run-time supervisor would be used to attempt to invoke specific

task state procession. It could then monitor the various states of the tasks so that deadlock

and parallel variable update/access faults could be detected.

Helmbold [Helm85] stated that a run-time monitor can detect a larger set of tasking

errors than could static analysis. For Ada, he gave eight different task states:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

Running,

Calling [enqueued, in rendezvous, circularly deadlocked],
Accepting,
Select-terminate,

Select dependents completed,

Block waiting,

Completed, and
Terminated.

In addition to each task's state, a list of its dependents is maintained.

A dead task is defined as a task that is blocked such that there is no possible way

that it can become unblocked. A tasking state of a program is defined to be the set of tasks

that have been activated by the program, their statuses, and any associated task information.

A deadness error occurs in a program when its tasking state contains a dead task. Different
deadness errors are:

13



(1)
(2)
(3)

Global blocking,
Circular deadlock, and

Local blocking.

Helmbold stated that "determining if a program contains any deadness error is as difficult

as the Turing machine halting problem."

A program must be modified in order to communicate with the monitor task. For
identification of the tasks, an integer ID and a string identifier are created. The monitor

creates a "picture" of the program's tasking state based on inserting entry calls to the
monitor task at the following points: (1) before an existing entry call, (2) at the execution

of an accept or select statement, (3) at the start or end of a rendezvous, (4) at the departure

from a block, and (5) at the activation of a sub-task. Although this picture is updated
whenever the monitor task is called, it is still possible that it will incorrectly represent the

true tasking state of the program.

Whenever global blocking occurs, a snapshot of the program's tasking picture can be

produced. The output includes the task string name, the task ID number, the status of the

task, entry queue status, and task being called (if any).

After a lengthy demonstration of the use of the task monitor, Helmbold goes over

possible extensions to this method. One calls for keeping track of more information (e.g.,

entry call parameter values). In this implementation, it is known that a task has issued an

entry call, but it is not known where the entry call was made (in relation to the source

code). Keeping track of a complete state history for each task would allow "playback" to

help decide where things started going wrong. Another extension is asking the user to play

Oracle by specifying rules in tasking interaction (i.e., 'q'his can never happen," or 'q'his can

only happen after this has happened..."). If one of the rules is broken, a user specified error
has occurred.

Helmbold is to be credited as one of the few who have actually implemented a

monitor and preprocessor (albeit without the mentioned extensions). As he stated

[Helm85b], this monitor implementation suffers from some deficiencies. It does not work
well with aborted tasks, prioritized tasks, or tasking statements executed during task

elaboration. Deadness errors due to something other than rendezvous are not detected

(e.g., shared variable communication).

Note that a monitor can be made to take evasive action since it can detect when

deadlock is about to occur. Given this foresight, the monitor could raise an exception for
deadlock.

It would be nice for the monitor to be part of the run-time scheduler. Then the

preprocessor would not be needed, and data structures could be shared. However, being

separate allows the monitor to (1) be independent of the scheduler's algorithm, (2) be
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portable, since it is not associated with a specific implementation, and (3) team up the

compile-time checker and the run-time monitor to look for deadness errors.

In converting the program P to the monitored program P', the following assumptions
are made:

(1)
(2)

(3)

(4)
(5)

Every declarative region in P corresponds to a declarative region in P'.

Every declaration in P of a type of program unit (in the Ada sense)

corresponds to a declaration in P' of the same kind.
Every object in P corresponds to an object or component object in P' of the
same kind.

Every statement in P corresponds to a statement P' of the same kind.
Declarations, objects, and statements in a region R in P correspond to

declarations, objects, and statements in the corresponding region R' in P'.

Program P and P' also have corresponding executions and equivalent potential errors.

If the monitoring of P' is correct, then: (1) any possible deadness error in P also exists in

P', (2) if deadness is detected, it happens before the error occurs, and the error will occur

if the computation occurs normally, and (3) certain kinds of deadness errors will always be
detected.

Although the monitor's picture of the tasking state of the program may differ from
the actual state (whether due to early tasking notification or late tasking notification), a

proof is presented to show that correct detection of error conditions occurs despite the
differences. The article ends with an example of a monitor being performed on the dining

philosopher's problem (the resulting transformed program appears in [Germ82]).

Cheng [Chen87] gives a presentation of EDEN, an event driven monitor for Ada

tasking programs. To reduce the amount of interference the monitor task has on the tasking

programs, EDEN employs the concept of "partial order preservation," which is based on
lattice theory. EDEN provides tasking state snapshots and histories, interruption of program
execution, and deadlock detection. It facilitates its processing by writing task histories to

files.

To interact with the monitor, a given program P is transformed into program P'.
Cheng asks the following three questions about monitoring execution: (1) What can be

monitored at the Ada source code level? (2) How can information be collected about

tasking behavior of the monitored program? (3) How can interference be reduced by the

monitoring actions in order to guarantee the accuracy of the information reported by the

monitor? Cheng lists the twenty-one possible states a task can be in:
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(1) Starting Activation (12)
(2) Activating (13)
(3) Activated (14)
(4) Executing (15)
(5) Delay (16)
(6) Entry calling (17)
(7) Accepting (18)
(8) SelectiveWaiting (19)
(9) Starting Block Activation (20)
(10) Block Activating (21)
(11) Block Activated

Block Completed
Block Termination Waiting
Block Terminated
Abnormal
Completed
Termination Waiting
Terminated
Rendezvous
Suspendedby Rendezvous
Continue

He statesthat 'q'he life cycle of a task can be described by a sequence of states of the task

from 1-Staring activation to 18- Terminated in terms of tasking behavior." Cheng criticizes

[Helm85] for having so few tasking states since he feels that this does not present a

complete picture.

A simple example of code transformation is that of an ACCEPT statement. First,

the monitor is called right before the ACCEPT to note that the task is "acceptable." After

the ACCEPT has been engaged, another call is made to note that rendezvous is occurring.

The statements of the accept entry are then executed. Right before the END for the
ACCEPT, another call is made to note that the task is "continuing" and that rendezvous is

at an end.

Cheng briefly notes that the "partial order preservation" concept keeps track of the

way tasks proceed. He attempts to associate the transformed program back to the original

(thus eliminating the effects of the monitoring task). He states that "We regard the program

transformation as a mapping from the lattice for the original program to the lattice for the

transformed program. If the transformation is homomorphic, then the partial order is

preserved."

The EDEN implementation consists of a preprocessor (3000 source code lines) and

a task monitor (6000 source code lines). The preprocessor keeps a symbol table of task

type/objects so that it can realize when tasking interaction is occurring. The task monitor

is in five parts:

(1)

(2)

Tasking-dynamic-dependence-tree: used to keep track of frames (subprograms,

blocks, or other tasks) upon which a task depends. Upon termination, the node is
removed from the tree.

Entry-call-queue-manager: every time an entry call is made on a task, this

component inserts an element into a list which indicates the module which called the
task and the time it was called. When rendezvous is complete or the call is aborted,
the item is removed from the list.
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(3)

(4)

(5)

Tasking-information-collector: this is a task whose entries correspond to all the

different twenty-one task states. Each call is saved for later analysis.
Tasking-information-manager: saves information collected by the tasking-informa-
tion-collector. It has exclusive read/write access to the information.

Query-processor: user interface that interprets commands.

In trying to find a unique identifier for each task, the DoD recommendation of using

access values is rejected since the task monitor would have to be recompiled for each

instance due to strong type checking. Task simple names cannot be used because they may

not be unique. EDEN therefore assigns its own run-time identifier. Different deadlocks
that are detected include:

(1)
(2)

(3)

(4)

Self-Blocking: check to see if a task has called itself.

Circular-entry-call: examine the entry-calling-graph of the program (which is a

directed graph). When an entry call from task T1 to task T2 occurs, EDEN checks
to see if the insertion of the edge < T1,T2 > would make a cycle in the graph. If so,
circular deadlock has occurred.

Dependence-blocking: when task T1 makes an entry call on task T2, EDEN
examines their dependency. If T1 is dependent on a block in the body of T2 or a

subprogram called by T2, then dependence-blocking has occurred.
Global tasking communication deadlock: this is detected when the number of active

tasks equals the number of blocked tasks.

Note that EDEN has been implemented, and at the time of the article was undergoing

improvement.

German [Germ82] illustrated methods for the transformation of program P into P',
with all of the imbedded monitor calls visible; the program was the dining philosophers. In

a later work [Germ84], he illustrated the transform of program P into program P', which can

experience deadlock iff P does also. When P' experiences deadlock, it can signal its

occurrence. For producing unique task identifiers, German creates a unique integer for
each task. The actual variable is stored locally in the task's body. He indicated that there

is no good way to generate a task name and suggested that the attribute t'taskname be

added to the language.

To detect a circular deadlock, the transformed program is dynamically represented

by a directed graph (V,E) with vertex V being for the tasks, and edges in E, represented by

(tl,t2). These indicate when task tl has initiated an unanswered entry call on task t2. The

graph can be modified by:

(1)
(2)
(3)

adding a new vertex (task startup),

adding a new edge (task tl calls task t2),
removing an edge (task t2 completes rendezvous with task tl), and
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(4) removing a vertex and all associated edges (the task that the vertex represents

has terminated).

In the above he defines deadlock as follows: "A vertex in a state graph g is deadlocked (for

the simple state model) iff it has an outgoing edge and there is no sequence of permissible

transitions of g which leaves the vertex without an outgoing edge." Also: "a vertex in g is
deadlocked iff there is a cycle reachable from it."

It is a common problem that a task cannot be properly monitored if it engages in any
tasking activity during the elaboration of its declaration. German [Germ84] suggests

modifying the program P so that the declaration is moved into an inner block, and thus

statements can be executed before the elaboration that allow the monitor to be prepared
for the elaboration.

Falis [Fali82] designed and implemented an Ada run-time task supervisor. His article

discussed Adam, an Ada modification. It has removed inherent tasking, making it very low

level. The site task scheduler is replaced by a run-time task supervisor package.

LeDoux [LeDou85] called a monitor to save "traces." A trace is a Prolog language

clause that is later analyzed within a Prolog environment. Her technique used an "interval-

based temporal logic approach." program actions were viewed as events that appear to

occur instantaneously, whereas program states are conditions that span a time interval. The

system employed, called YODA, parses an Ada program, generates a symbol table, and
outputs a transformed program that has inserted diagnostic output statements. The

transformed program is then executed. Prolog clauses generated include the following:

entry_called0

call_canceled0
entry_queue_lengthened0
entry_queue_shortened0

rendezvous_started0

rendezvous completed0

varread0

var_updated()

entry_parm_set0

task activated0
taskcompleted0

ready_to_terminate0

program_ended0

abnormally_terminated0

The location of the occurrence is identified by the program unit and the block ID (which

is generated if it doesn't exist).

For variables, only scalars are supported. Entry families are not supported. A time

stamp is given to each tasking occurrence. Prolog is used to interpret the results (asking

such questions as "Which tasks updated X?"). The sample included in the article shows how

it can be detected when tasks access/update a shared variable at the same time.

A paper by Gait [Gait86] goes over what is called the probe effect in concurrent

programs. By introducing delays into the program, scheduling can be simulated. If the
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program's results seem to changebasedon the delays,then there may be synchronization
errors in the program that make the program's resultsdependent on the way in which it is
executed.

2.3.6 TESTING CONCURRENT PROGRAMS

While the entire purpose for the groundwork presented above is the actual testing

of concurrent programs, it is clear from the literature that little has made its way into

practice at this point. Tai [Tai85] presents a graphical notation for testing concurrent

programs; however, his treatment is quite esoteric. Goldszrnidt [Gold89] presented a black

box approach toward testing programs written in concurrent languages. Hsuesh [Hseu89]
concentrated more on data oriented debugging for concurrent programming languages. Also

involved with debugging was Brindle [Brin89], who showed considerable insight into the

problems involved in testing/debugging. LeDoux's approach [LeDou85] of saving traces
appeared to be one of the most creative, especially as it relates to the past experience within

QUEST. Also, Stone's [Ston88, Ston89] use of the concurrency map representation might

be useful for depicting the structure of tasking events and for showing the "replay" of a

tested tasking program (see Section 4 of [Ston89] paper). The floating nature of the

concurrency map could also be employed by the "task scheduler/monitor" in an attempt to

force certain tasking progressions.

2.3.7 OPTIMIZATION OF ANALYSIS

Taylor [Tay188] introduces methods that can cut down on the huge time-space

requirements to perform static analysis or symbolic execution. One of the techniques is
parceling. The basic static representation of all possible concurrency histories assumes that
all tasks are active at the same time. This might not be true, and the sample space may be

reduced significantly if inactive tasks can be identified and thus cannot be considered as

eligible for state transition. If tasks can be identified as being independent, they can be

analyzed separate from the whole.

The following approaches were found for limiting computation explosions [TAYL83,

TAYL88]:

. Parceling of the analysis. The run-time for concurrency analysis of a large program
with T tasks and n flow graph nodes per task is o(nr). The basic idea of parceling

is to note when certain tasks are active, and consider these tasks only when they are

needed rather than assuming that all of the tasks are active at the same time.

Parceling has the disadvantage of placing restrictions on the program.

. Weak monitors: The use of a weak monitor group (example procedures, tasks, and

packages) whose composition is to be applied to the program under analysis was
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suggested as a means to reduce computation. Weak monitors have the problem that

they do not detect existing erroneous error states.

. Heuristic Search: A heuristic function is defined as a "reasonable estimator of the

distance (number of state transitions) between a given node and some node

representing an error." The use of such a function to drive the search process is
called a heuristic search. As an alternative to parceling and weak monitors, it does

not have their inherent disadvantages. The heuristic search relaxes certain con-

straints on the concurrency state generator.

Taylor also provides methods to control generation of the symbolic execution graph.

2.3.8 CONCLUSION

In summary, the literature review clearly revealed that a run-time monitor, possibly

with task scheduling capabilities, is a major concept which should be integrated into the

design of QUEST/Ada. Ideally, static analysis of concurrent tasks provides a wealth of

understanding on the potential for tasking errors. Unfortunately, static analysis is expensive

to perform on complex tasking programs. If, however, the amount of tasking is simple and

easily managed, static analysis can be used to provide a potential concurrent history space

to compare actual executions of the concurrent tasks against.

Task monitoring is essential in studying concurrent tasks. This requires transforma-

tion of the original program into a new program that calls the task monitoring prior and

after tasking activities. The task monitor, upon the main program's impending termination,

can save the tasking information to storage. This information represents a concurrent

history of one instance of execution. The monitor can also dynamically find when shared

variables are updated in parallel and when deadlock is about to occur in the tasking

programs.

The monitor can be augmented by a simple scheduler that attempts to force the

tasking program through a predetermined path of concurrent execution. This would be most

useful if static analysis were used to produce the potential concurrent history space. Each

proper concurrent history in the potential space could then be attempted, and if successful
(as noted by the output of the monitor) that history would be checked off as covered.

The issue of test data is complicated by concurrency. In addition to path coverage,

concern must be with concurrent history coverage. If static analysis is available, all potential

concurrent histories can be generated. The output of the monitor task, a true concurrent

history, can be compared against the potential concurrent history space, and the matching
member of this space can be checked off. The remaining members in the potential space

are goals for execution. Test data cannot be executed with confidence for one instance of
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a concurrent history since the program might produce different results for the same set of

data when executed through different concurrent histories.

The main advantage of concurrency analysis is that it provides insight into the tasking
interactions with concurrent programs. The major errors that the analysis purports to find -

- rendezvous deadlock and shared variable parallel update -- would not occur in the Ada

program that uses Ada's advanced tasking features that were especially designed to avoid
these problems. By using the monitor task and by examining the potential concurrent

histories, any tasking logic errors, however, can be identified.

In summary, this literature review forms the basis for the design of components
within QUEST which will consider concurrency within the Ada programs which it tests.

This design is given in Section 4 below.
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3.1 OVERVIEW OF THE QUEST/ADA PROTOTYPE

One important purpose of the QUEST/Ada project is to determine the viability and
effectiveness of the rule-based testing paradigm. In order to collect data to determine the

effectiveness of this approach, a prototype of the QUEST/Ada system has been developed.

This prototype consists of five parts, which are discussed briefly below. Each will be

described in greater detail in the subsections which follow this one.

The first step in testing a module of source code is to pass a file containing the

source to the Parser/Scanner Module (PSM). The PSM is responsible for collecting basic

data about the program, such as the names, types, and bounds of all of the variables, as well
as the number of conditions and decisions found in the module. Additionally, the PSM is

responsible for "instrumenting" the source code, which involves replacing each Boolean

condition in the program with a function call to the Boolean function "RELOP" (see

example instrumented code will be given below). Instrumentation also involves surrounding
the test module with a "driver" or "harness". This harness is responsible for passing the test

data generated by the rule base to the module under test, either as parameters or global
information.

Once the source module has been scanned and instrumented, initial test data are

prepared for it by the Test Data Generator (TDG). The TDG is an expert system designed

to select the test data that will be most likely to drive a specific control path in the program.

Four types of rules were considered and evaluated in the test data generator: random,

initial, parse-level, and symbolic evaluation. Random rules, as the name implies, simply

generate random test data. The generation of random data provides base data for the more

sophisticated rule types to manipulate. Similarly, the _ rules generate simple base data

from the information supplied from the parse. Parse-level rules, which are more

sophisticated, rely upon the coverage table and best-test-case list developed by the Test

Coverage Analyzer (see below). Parse-level rules implement the path prefix testing strategy

described by Prather and Myers [PRA87]. Finally, symbolic evaluation rules extend this

concept by representing each section of the program as an abstract function.

The symbolic evaluation rules utilize the coverage table and the symbolic boundary
information. The work of the symbolic evaluator is divided into two parts -- developing and

evaluating symbolic expressions. Using descriptions of the conditions in the module under

test provided by the PSM, the SE develops symbolic boundary expressions in which each of
the variables in a condition is represented in terms of the other variables. This boundary

expression implicitly describes the point at which the input variables will cause the Boolean

condition to evaluate to equivalence. Thus, by adding or subtracting a small value, epsilon,

to the boundary, the Boolean inequality can be forced into each of its three states. After
developing the symbolic boundary equations, the SE evaluates them using the test data as
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it appears at the time the condition is executed. In mathematical terms, if Di(t ) is the input

test data, Dc(t ) is the value of the variable at the condition in question, and Db(t ) is the

boundary value for that variable at that condition, then a simple abstract function heuristic

might select Di(t + 1) = Db(t)*(Di(t)/Dc(t)).

As mentioned above, the more sophisticated rule types rely on the Test Coverage

Analyzer (TCA). The TCA provides two major functions: maintaining the coverage table,
and determining the "best" test case for every decision. The coverage table maintains a list
of each decision and condition in the module under test. Each decision and condition may

have one of four mutually exclusive coverage states: not covered, covered true only, covered

false only, and fully covered. This information is used by the parse-level and symbolic
evaluation rules to determine which decisions or conditions need to be covered to provide

complete decision/condition coverage. The best test case for each decision is determined

by a mathematical formula describing the closeness of a given test case to the boundary of

a specific condition. The test data generator rule bases modify the best test case to attempt

to create new coverage in the module under test.

Finally, a data management facility has been added to the prototype to simplify the
user interface and report generation functions. This facility, known as the Librarian, is

designed to be portable so that a user interface can be developed on several machines by

accessing the librarian in a similar fashion. Additionally, the Librarian acts as a data archive

so that regression and mutation testing may be implemented using previously generated test
cases.

These functions act together to provide a prototype environment for the rule-based

testing paradigm. Each one of the major parts of the prototype is described in greater detail

in the following sections.

3.2 TEST DATA GENERATOR

As designed, the QUEST/Ada system's performance is determined by two factors:

(1) the initial test case rules chosen to generate new test cases, and (2) the method used to
select a best test case when there are several which are known to drive a path to a specific

condition. If the user does not supply an initial set of test cases, then they are generated

by rules that require knowledge of the type and range of the input variables. Test cases are

generated for these variables to represent their upper and lower values as well as their
mid-range values, i.e., (upper limit - lower limit)/2.
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3.2.1 BEST TEST CASES

The objective of the Test Data Generation (TDG) component of QUEST is to achieve
maximal branch coverage. In order to assure the direction of test case generation to be

fruitful, a branch coverage analysis is needed. The coverage analysis of this framework
follows the Path Prefix Strategy of Prather and Myers [PRA87]. In this strategy, the
software code is represented as a simplified flow chart. The branch coverage status of the
code is recorded in a coverage table. When a branch is driven (or covered) by any test case,
the corresponding entry in the table is marked with an "X". Figures 3.2a and 3.2b indicate
a sample flow chart and its coverage table. The goal of the test case generation is to fill all

the entries in the table, if possible.

The coverage table provides not only information regarding the branches covered but

also direction for further test case generation. Consider Figures 3.2a and 3.2b. Currently,

conditions 1 and 2 are fully covered; conditions 3, 4, and 5 are partially covered; and
condition 6 is not covered. Since conditions 1 and 2 are fully covered, there is no need to

generate more cases to cover them. Condition 3, on the other hand, is partially covered.
More cases should be generated to drive its false branch, i.e., 3F, which is not yet covered.

The Path Prefix Strategy states that new cases can be generated by modifying a test case,

say case 3T, that has driven 3T. Consider the fact that case 3T starts at the entry point and
reaches condition 3. Although it drives 3T, it is "close" to driving 3F. Slight modification

of case 3T may devise some new cases that will drive 3F.

With this strategy in mind, the test case generator should target partially covered
conditions. Earlier test cases can be used as models for new cases. Conditions that have

not been reached yet, e.g., condition 6 in Figure 3.2b, will not be targeted for new case

generation. This is because no test case model can be used for modification. A model will

eventually surface later in the process. In this example, after condition 5 is fully covered,

a model for condition 6 will appear.

Problems arise when there is more than one test case driving the same path. For

example, if cases 1, 2, ..., n all drive branch 3T of Figure 3.2b, then the selection of the case
to be used as the model for branch 3F becomes problematic. If all cases are used, efforts

are likely to be duplicated, which is not efficient. Since an automatic case generator can

generate a large amount of cases, it would be necessary to quantify the "goodness" of each
case and use the "best" case as the model for modification.

The objective of modifying the best test case is to generate a new case which will
cover the uncovered branch of the targeted condition. For this reason, the selection of a

best test case will directly affect the success of test case generation.
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Consider the typical format of an IF statement: IF exp THEN do- 1 ELSE do-2. The

evaluated Boolean value of exp determines the branching. Exp can be expressed in the

form of: lhs < op > rhs. Lhs and rhs are both arithmetic expressions and < op > is one of

the logic operators such as <, >, < =, > =, < >, and --. The _ of a test case, tl,

relative to a given condition can be defined as

[lhs (tI)- rhs (tI)f / MAX ([lhs (tI)[, [rhs (tI)[) (I)

Lhs(tl) and rhs (tl) represent the evaluated value of lhs and rhs, respectively, when tl is

used as the input data. This measure tells the closeness between lhs and rhs [DEA88].

When this measure is small, it is generally true that a slight modification of tl may change

the truth value of exp, thus covering the other branch. The importance of slight
modification to a model test case is based on the fact that the model case starts from the

entry point and reaches the condition under consideration. Between the entry point and the

condition, the modified cases must pass through exactly the same branching conditions and

yield the same results. For this reason, the smaller the modification is, the better the chance

will be for a modified case to stay on the same path [PRA87]. The given closeness of lhs

and rhs provides a way of measuring this goodness.

The goodness measure of (1) may range from 0 to 2. It can be normalized so that the
measure will range from 0 to 1. This is done by dividing equation (1) by 2. The new
definition will be

Ilhs (tl)- rhs (tl)l / (2"MAX (llhs (tl)J, Irhs (tl)l)) (2)

With this definition, a test case that yields the smallest measurement is considered to be
the best test case of the condition under consideration.

The closeness measurement of (1) and (2) has a serious risk, however. Recall that a

set of new test cases is generated based on the best test case of a partially covered condition
(called target condition), and the intent of the new test case set is to cover the uncovered

branch of the target condition. Although we define the slightness of modification of a test

case as its goodness, this measure is computed based on the target condition only. A slight

modification to the lhs and rhs of the target condition may not have the same meaning to

those conditions on the path. This may result in unanticipated branchings along the path,

therefore losing the original purpose of the new cases. In order to reduce the likelihood of

unanticipated branching, a test case's goodness measure should also consider those

conditions that are on the path. This idea can be expressed in the following example.

In Figure 3.2. la, two test cases, t a and tb, pass through the false branches of conditions
D1, D 2, and Dy Assume the current effort is to generate more cases such that the truth

branch of D 3 will be covered. Either t, or tb should be used as a mode/for the new cases.

If the whole input space is represented as R, the input space can be divided into several

subspaces (see Figure 3.2.1b). First, R is divided into 1T and IF, which represent the
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portions of input space that drive the true and false branches of D 1 respectively. Similarly,
1F can be divided into 2T and 2F, and 2F can be divided into 3T and 3F.

In this example, both ta and tb fall within the subspace of 3F. If we want to drive

the other branch of D3, new cases should come from the subspace of 3T. A best test case
must be selected between ta and tb. According to the earlier definition, goodness is the

d/stance that each test case is from the boundary of 3T and 3F. Based on this definition,

t, is closer to the boundary so it is chosen as the better test case. From the viewpoint of D 3
this is correct. A relatively small modification to ta may lead to 3T. However, t, is also

close to the boundaries of D1 and D 2, so there is a good chance that a slight modification

to t a may lead to undesired branches at D_ and D 2.

We will call the magnitude of modification that is required to drive a different branch

at a condition the freedom space of a test case. In this example, ta has a small freedom

space at D 3 which is desirable. But its freedom spaces at D_ and D z are also small, which
may cause unanticipated branchings. On the other hand, although tb is not as close to D3's

boundary as t, is, neither is it close to any other boundaries. A larger modification may be
required for tb to lead to 3T. Since tb is far away from any other boundaries, a larger

modification may not cause any unanticipated branches. For this reason, the goodness of

a test case concerning a particular condition should be determined by the freedom space at

the target condition as well as the freedom spaces of all conditions that are on the path to
the target condition. For the former element, the smaller the better; for the latter element,

the larger the better. The goodness can now be redefined as:

G(t,D) = w * L(t,D) + (l-w) * P(t,D) (3)

where: G(t,D) : Goodness of test case t at condition D.

L(t,D) : Freedom space of t at D.

P(t,D) : Sum of freedom space reciprocals of t along the path toward D.

w : Weighting factor between L(t,D) and P(t,D),
0<w<l.

L(t,D) is defined as 2, and P(t,D) is defined as:

P(t,D) = r. 1 / (n*L(t,Di)) (4)

Di

Here, D i is a condition that is on the path toward D, and n is the total number of

these conditions. Although this definition does not represent the actual distance of test case

t to a boundary, it is a reasonable approximation. According to this definition, the smallest
value indicates the best test case.
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Figure 3.2.1b Input space of the program in Figure 3.2.1a
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Although formula (3) seems more appropriate than formula (2), in terms of test case

goodness measurement, it would be difficult to prove it theoretically, since both definitions
are derived heuristically.

When a test case is run in the test case analyzer and it reaches a condition that is

either partially covered or not covered at all, its goodness value is computed. This value is

then compared with the goodness value of the current best case, if there is one. If its value

is smaller, this test case replaces the original case and becomes the new best case. In the

implementation, the test case analyzer actually keeps more than one test case for each

partially covered condition. That is, the second, the third, and the fourth best cases are also

kept. This provides alternatives for the test case generator when the original model does

not yield new coverage.

3.2.2 TEST DATA GENERATOR PROCEDURE

When a new test case is generated, it is with the intention of covering a particular

branch. This intended branch always belongs to a partially covered condition, except in
the very beginning of test case generation. Based on the best test case of a targeted

partially covered condition, a slight modification to the case is made with the intent to lead

the execution to the uncovered branch of the target condition. The importance of

"slightness" is to keep the new test case following the original execution path with the

exception resulting in the target condition. The main issue in the research has been the
establishment of methods for efficiently performing this modification.

Consider Figure 3.2.2. Input to the procedure contains three parameters x, y, and z.
Assume condition D is partially covered and its best test case is (x 1, Yl, zl). We try to

generate more cases to cover D's false branch. Condition D can be expressed as lhs(x, y,

z, vl, v2, ...) <op> rhs(x, y, z, vl, v2, ...). Here, v_,v2,.., are internal variables of the
procedure. Input parameters x, y, and z may or may not be modified between the entry

point and condition D. In this case, if (x t, Yl, z_) is input into the procedure, the evaluation
of D will result in a truth value. What we are trying to accomplish is to modify (x_, y_, z_)

such that the evaluation of D will be false. The following subsections discuss some

heuristics that can be used to generate new cases.

3.2.2.1 FIXED PERCENTAGE MODIFICATION

One way of generating new cases is to modify each parameter of the best test case with

a fixed percentage of each parameter's ranges. The percentage can be any one of or any

combination of 1%, 3%, 5%, 10%, etc. For example, if the best test case is (x_, yl, zt) and

the ranges for input variables x, y, and z are [0 10], [-100 0], and [-50 50] respectively, a 1%

modification would generate two new cases. They are (x I + 0.1, Yl+ 1, z1+ 1) and (Xl-0.1, Yl"1,

zl-1 ). Several different combinations can be used at the same time. This would provide
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more new cases. After a new case is generated, it must be checked to ensure that each

variable is within its range.

3.2.2.2 RANDOM MODIFICATION

This method modifies the best test case in a random way, i.e., the modification

percentage is random. Each new case must be checked for its validity before it is stored.
Random modification can be done in several ways. That is, in each new case, one or several

variables can be modified. Combinations of these modifications provide more cases and

may cover more branches.

3.2.2.3 MODIFICATION BASED ON CONDITION CONSTANTS

This method generates new cases based on the constants appearing in a condition.

Depending on the number of constants in a condition, different rules can be applied. For

example, if there is one constant and one input variable in a condition, then generate a new
case by putting the constant in the position of the input variable in the best test case. This

rule is designed for conditions of the form: x < op > C, where C is a constant. Similarly, for

two constant conditions, e.g., x+C 1 <op> C.2, three new cases can be generated. They are

C1+ C2, C1-C2, and C2-C v Rules for conditions with more constants have similar forms.
These rules were developed by DeMillo, Lipton, and Sayward [DEL78], and Howden

[HOW87], who are considered to be experts in software test case generation. Implementa-
tion of this kind of heuristic has been reported in a separate paper IDEA89], in which these

rules are represented in Prolog. Performance of this approach showed a significant

improvement over randomly generated test cases.

3.2.2.4 MODIFICATION BASED ON SYMBOLIC EVALUATION

3.2.2.4.1 BOUNDARY COMPUTATION

Another approach to new test case generation is to determine the boundary that

separates the true and the false values of a condition, say D. Effort is then directed to

modify the best case to cover both sides of the boundary. Since the evaluation of D can

only be externally controlled by input parameters, say x, y, and z, a meaningful way of

expressing the boundary would be defining it in terms of x, y, and z. For example,

xb = fl(y,z,vl,v2, ...)
Yb -- t'2(X,Z,Vt,V2,...)
Zb = f3(x,y,Vl,V2, ...)
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This set of expressions defines the condition boundary of D for x, y, and z. They can

be derived from D using symbolic manipulation. For example, if we have a condition

x+ 3*y --< 4-6*z+v

The condition boundary will be

xt, = 4-6*z+v-3*y

Yb = (4-6*Z+V-X)/3
= (4-X-3*y+v)/6

Remember that new test case generation should be based on the best case (x 1, Yl, zx)

and the modification should be as small as possible. A simple strategy would be to modify

only one variable at a time. For example we can modify x and keep y and z unchanged.
In this case, the condition boundary expressed for x should be used, i.e., xb --- fl(y,z,v,v 2, ...).

In order to compute the desired value of x at D, use the actual values of y, z, v_, v2, ... just

before D is evaluated. The computation provides the desired boundary value of x at
condition D. Three new cases can be generated to cover both true and false branches: (xb,

y, zl), (x b+ e, y, zl), (x:e, y, zx). Here, e is a small positive number, e.g., e = (range of
x) / 100. Similarly, this case generation procedure can be applied to variables y and z.

In this procedure, an undesirable assumption is made. It is assumed that x (or y or

z) would not be modified between the entry point and condition D. This may not be valid

at all. If an input variable value is modified by the program before reaching the target

condition, the precise computation of the boundary may lose its purpose. Whether an input
variable has been modified or not can be checked easily. For example, if (x, y, z_) is a

test case of the procedure and (x c, y_, zc) are the actual values of x, y, and z just before
condition D is executed, input variable modification can be checked by comparing these two

sets of values. If a variable, e.g., x, has not been modified, i.e., x1 = x¢, then the computed

condition boundary, xb, can be used directly for new case generation. This can be

represented in a rule, such as:

IF x1 =x¢

THEN generate three new cases

(Xb' Yl' Zl)'

(xb+ e, y. zl),

(xb'e,Yl,Zl)"
Even ifthe variablex has been modified,itislikelythat ifeithery or z has not been

modified,applyingthistestcase generationprocedure to one of them willbe sufficientto
drivethe conditionthe otherway. For thisreason itisdesirableto applythe procedure to

all variables appearing in the conditional expression. Rules for other input variables would
have the same form.
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Now, the question becomes: what can be done if an input variable has been modified,

i.e., the ELSE part of the rule? If the desired boundary value of x at condition D is xb, this

value must be inverted back through the path that leads to condition D. Through this

inversion, the value of x at the entry point can be found. However, this involves a complex

path predicate problem which does not have a general solution [PRA87]. Heuristic ap-

proaches toward solving this problem will be presented below.

Consider the following situation. The input value of x is x# the actual value of x just

before condition D is xc, and x_ < > x¢. This means variable x has been modified before
reaching D. Assume the condition boundary of x at D is xb. In this case, we might surmise
that input x should be changed from x_ to an unknown value x_ such that, just before
reaching D, x will be changed from x¢ to xb. Since we do not know how x is modified along
the path, precise modification to x at the entry point cannot be computed. However, an
approximation can be derived. At condition D, the desired value of x is xb and the provided
value is x¢. We may consider x i is off the target, i.e., the condition boundary at D, by the
following percentage:

Ixb-X¢I / (2*MAX(Ixbl, Ix¢l)) * lOO% (5)

Formula (5) is identical to (2) but has a different interpretation. Following this

measurement, we can modify input x with the same percentage. One more question needs

to be answered: how should the percentage of x be defined? For example, if we want to

modify x by 12% and xi = 10, the answers should not be simply 11.2 or 8.8. This is because

the input space of x may be something like [-1000, 200]. Percentage based on xi may not
reflect the input space of x at all. The proposed calculation is to use the input range size

of x, i.e., [upperlimit of x - lower limit_ofx], as its basis. In this example, the range size
of x is 200-(-1000) = "-12[)0, and the new boundary values for x would be 10+ 144 = 154 or
10-144 -'- -134. The values of x for new test cases should result in conditions which are

slightly off the boundary as well as those right on the boundary. If we use one percent of
x's range as the variation, i.e., e = 12, six new cases can be generated. While all other

variables remain unchanged, new values for x will be 142, 154, 166, -146, -134, and -122.

This heuristic can be integrated into the earlier rule to yield:

IF X 1 -- X¢

THEN generate three new cases ;no modification

(_, Yl, zl),

(xb+ e, Yl, z0,
(x:e, Yl, zt)-

ELSE compute boundary value, xb,

compute off target percentage using (5),

approximate input boundary values using input range,
generate new cases for being on or slightly off boundary.

;modification along path
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Another possible way of approximating the input boundary value is to assume a linear

relationship between xc and x_. In this situation, the approximated boundary value for x at

the entry point would be xb*xt/x c. Three new cases can be generated for being on or

slightly off the boundary.

In this section, several heuristic rules have been presented. It is likely that each rule
is effective in certain situations. If several rules are applied to a program, they will

complement each other and yield better coverage.

3.2.2.4.2 FACTS USED BY THE SYSTEM

.

The rules accept the following types of facts:

(names varnamel var_name2 ... varnamen)

where the var namei are the names of variables accessible to the module;

2. (types type_l type_2 ... type_n)

where type_i is the data type of variable i,

3. (val-at-cond test_num decision_num condition_num

varvaluen)

var value l var value2 ...

where var valuei is the value of variablei at the point of the current decision,

condition and test case data; and

4. (cond-expr decision_num condition_num conditional_expression)

where the conditional_expression is in fully parenthesized infix notation.

Using these facts, the following intermediate facts are generated during execution:

1. (number-of-variables ?n)

is used to build the correct length for list-of-nils.

2. (list-of-nils NIL NIL ... NIL)

is used to initialize the boundary-values to NIL.

3. (lhs ...)
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4. (rhs...)

5. (variable ?x)

6. (working decision_num condition_num ?x)

7. (number-of-variables-done?n)

. (boundary-expr decision_num condition_num boundary_expression)

o (evaluate test_num decision_num condition_num boundary_expression)

Items 3-7 are all used during the symbolic manipulation of expressions to produce the

boundary-expressions. Items 8-9 are used to find the boundary-values. The list-of-nils and

boundary-expr facts are retained for use with other test cases.

The final result is the assertion of boundary-values facts (one for each test_num,

decision_num, condition_num combination) in the form:

(boundary-values test_num decision_num condition_num var_valuel varvalue2

varvaluen)

where var valuei is the boundary value for variable i in the decision-condition expression

for the cun'ent test case. Boundary values are found by solving the expression symbolically

for the variable of concern and substituting the val-at-cond values for the remaining

variables. Variables not present in the expression are given a boundary value of NIL.

m

3.2.2.4.3 SALIENCE LEVELS OF RULES

Salience levels are used in the CLIPS language to force a required preordering

among groups of rules. A rule will not execute until all rules of higher salience level have
executed. The following salience levels are used in the Test Data Generator when using

Symbolic Evaluation:

500 reading-file "reads information from intermediate.results file and asserts it as val-at-
cond facts"

clear-fact-list "retract invalid val-at-cond facts"

reset-read-file "reasserts read-file fact to force another read, until end of file

intermediate .results

401 open-VAX-file "opens file of conditional expressions"

400 read-CE-files "reads info from desc_cond.clp and asserts it as cond-expr facts"
100 swap-right-and-left "to get current variable on left hand side of expression"
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w do-not-swap-right-and-left "current variable is already on left hand side - this rule

prevents the previous one from firing"
0 first-time-through "prevents Symbolic Evaluation when generating initial test case"

open-VAC-file "to get val-at-cond information from last testing iteration's executions"

rules to manipulate symboIic expressions, solving for the current variable
initialize-empty-list-of-nils "to be used in creating boundary-values facts"

build-list-of-nils "adds one NIL for each expression"

variable-not-in-condition "so go on to next variable"
-50 assert-boundary-expr "cond_expr symbolically solved for current variable"

condition-not-successfully-simplified "so go on to next variable"
-100 incrementer "solve cond-expr fo next variable"

cond-expr-done "current cond-expr processed for all variables"

-150 start-one "solve a cond-expr for its first variable"
-200 prepare-for-evaluation "get into form for variable to value substitution"

substitute "substitute val-at-cond value for a variable name"

-250 evaluate "perform simple arithmetic to reduce right hand side"

set-up-null-boundary-values "initialize for current val-at-cond"
-300 assert-boundary-values "replace NIL with current boundary-value for a variable"
-400 open-test-case-file "will execute every time Clips is reset"

-440 generate-midrange-initial-test-case

-450 generate-boundary-test-cases
generate-boundary-plus-ten-percent-test-cases

generate-boundary-minus-ten-percent-test-cases
reassert-best-test-case "for the current decision and condition"

-460 retract-generate-initial-test-cases-fact
-470 close-test-case-file "will execute last"

3.2.2.4.4 CONTROL FLOW

The order of execution or control flow of the Symbolic Evaluator to generate

boundary-values facts follows. The Symbolic Evaluator initializes a value for each variable

from the Parser/Scanner to NIL, evaluates each conditional expression, generates a

boundary condition, evaluates each boundary condition with conditional values (from the
Intermediate Results file), and replaces the NIL value with the actual boundary value. The

pseudo-code for the control flow listing follows:

initialize-empty-list-of-nils
build-list-of-nils

while not all cond-expr's done

start-one (prepare to solve a cond-expr for first variable)

while this cond-expr not done

[do-not-]swap-left-and-right (get variable on left side)
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if "variable" is not in cond-expr
then variable-not-in-condition

else solve expression for variable

assert-boundary-expr

if condition not successfully simplified

then go on to next variable

it" this cond-expr is done (solved for all variables)

then cond-expr-done

else incrementer (prepare to solve cond-expr for next

variable)

for each combination of %,al-at-cond" and "boundary-expr" facts

prepare-for-evaluation (set up "evaluate" facts)

substitute (%,al-at-cond" values for variable-name)

while not all "evaluate" facts fully reduced
evaluate (reduce right hand side arithmetically)

for all '\,al-at-cond" facts

set-up-null-boundary-values (initialize to list-of-nils)

for each simplified "evaluate" fact, i.e. boundary value

assert-boundary-values (replace NIL with actual value)

3.2.2.4.5 AN EXAMPLE

The input and output facts of the Symbolic Evaluator are contained in a series of

lists. The list of variables from the Parser/Scanner are created as a fact in "names X1 X2
... Xn". The Intermediate Results file is used to create conditional values stored as "val-at-

cond Y1 Y2 ... Yn" facts. The "val-at-cond's" are the values at the decision and condition

point for this evaluation. The Parser/Scanner generates the conditional expressions in infix

notation for conversion to "cond-expr Z1 Z2 ... Zn" facts. The following listing is an

example of a fact list prior to execution:

initial-fact

* initializes the fact list.

names x y z q abba v
* list of variables in this module.

val-at-cond 0 0 0 T 1 2 3 4 5 6

* value of the variables at Test 0, Condition 0, Decision 0.
val-at-cond 0 1 0 T 1 2 3 4 5 6

val-at-cond 1 1 0 T 10 20 30 40 50 60

val-at-cond 1 0 0 T 10 20 30 40 50 60

cond-expr 0 0 "(" x "+" "(" 3 "*" y ")" ")" "< =" "(" "(" 4 "-" "(" 6 "*" z

" conditional expression - (x + O * Y)) < = ((4 - (6 * z)) + v).

cond-expr 1 0 x "=" y

")"")" "+" v ")"
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During execution, the Symbolic Evaluator sets a value for each variable to NIL (list-

of-ntis). The boundary expressions are then generated and evaluated. New values replace

the NIL value if they are found; they are placed in the "boundary-values" listing. The

boundary values are submitted to the expert system for further evaluation if this is required.

The following listing is the output given the input fact list above:

initial-fact

names x y z q abba v
val-at-cond 0 0 0 1 2 3 4 5 6

val-at-cond 0 1 0 1 2 3 4 5 6

val-at-cond 1 1 0 10 20 30 40 50 60

val-at-cond 1 0 0 10 20 30 40 50 60

cond-expr 0 0 "(" x "+" "("3 "*" y ")" ")" "< =" "(" "("4 "-" "(" 6 "*" z ")" ")" "+" v ")"

cond-expr 1 0 x "=" y
* the original facts remain in the listing.
list-of-nils NIL NIL NIL NIL NIL NIL

* a NIL is generated for each variable.

boundary-expr 1 0 x "=" y
boundary-expr 1 0 y "=" x
* boundary expressions are generated for both the left and right * side of the conditional

expression. Note: The last "cond-
* expr" is evaluated first.
boundary-expr 0 0 x "=" "(" "(" "(" 4 "-" "(" 6 "*" z ")" ")" "+" v ")" "-" "(" 3 "*" y ")" ")"

boundary-expr 0 0 y "=" "(" "(" "(" "(" 4 "-" "(" 6 "*" z ")" ")" "+" v ")" "-" x ")" "*" 0.33333334

tl)t'

boundary-expr 0 0 z "=" "(" "(" 4 "-" "(" "(" "(" 3 "*" y ")" "+" x ")" "-" v ")" ")" "*" 0.16666667

'1)11

boundary-expr 0 0 v "=" "(" "(" "(" 3 "*" y ")" "+" x ")" "-" "(" 4 "-" "(" 6 "*" z ")" ")" ")"

boundary-values 1 0 0 -176 -42 -1 NIL NIL 246

* boundary values are generated for "val-at-cond's"

* (test condition) 0 0, 1 1, 0 1, and 1 0.

boundary-values 1 1 0 20 10 NIL NIL NIL NIL

boundary-values 0 1 0 2 1 NIL NIL NIL NIL

boundary-values 0 0 0 -14 -3 0.5 NIL NIL 21

3.2.2.4.6 SYMBOLIC EVALUATOR INTERFACE

When using the symbolic evaluation rules, the Test Data Generator requires the
intermediate results from the execution of the instrumented code and the conditional

expressions from the Parser/Scanner in order to generate facts and then execute. The
intermediate results and conditional expressions are put into files for the Test Data

Generator to read so that it can generate the required facts. The files are read, facts
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generated,boundary resultscreated, and new test cases generated. The files are then closed

awaiting new intermediate results.

3.2.3 TEST CASE GENERATION RULE ORGANIZATION

This research has developed many test case generation (TCG) rules. It is not

desirable to use them all at once, since too many unwanted cases are generated. If one case

covers a particular branch satisfying the coverage requirement, extra cases may be a waste
of effort. In this situation, test cases can be generated in an incremental manner. That is,

TCG would stop when a predefined criterion is met. On the other hand, multiple cases

covering a particular branch provide a larger pool for best test case selection. The purpose

of this section is to present an initial organization of the TCG rules. If it is found to be

desirable to keep the number of test cases down, then the following rule organization

scheme can be applied.

Associated with each best test case is a numeric flag, FG, set to 1 initially. Every

time a best test case is used for case generation, its FG is incremented by one. The test

case generation rules are divided into groups. When more cases are to be generated, FG
is used as an index to the rule groups. This guarantees that a different rule group will be

used for a given best test case in each loop. This avoids repetition and wasted effort. This

scheme is expressed below:

CASE GENERATION FOR CONDITION-i

lw

2.

3.

4.

5.

6.

7.

8.

.

Retrieve best-test-case, BTC-i, of CONDITION-i;

N = FG of BTC-i; FG = FG + 1;

Select and apply the N-th rule group;

Test run and analyze new cases;

IF no-new-coverage-is-achieved

THEN IF rule-group-is-not-exhausted

THEN goto step 2
ELSE no-additional-coverage-can-be-achieved-

by-BTC-i

ELSE CONDITION-i-is-fully-covered;

r

Note that in step 4 a new best test case may be defined. In that situation FG would
be reset to 1. Recall that a target condition is already partially covered. Any additional

coverage will lead to full coverage, i.e., step 9. However, if the rule groups have been
exhausted before additional coverage can be achieved, something else must be done, i.e.,

step 8. This is further discussed in Section 3.4.

One example of organizing the rule groups follows:

38



=

GROUP-1

a. Modify single variable through symbolic manipulation.

b. Modify single variable by I%, and 5%.

GROUP-2

a. Modify two variables - one variable is bound to its mid-range and the other is

computed through symbolic manipulation.

b. Modify single variable by 10%, 20%, and %50.

GROUP-3

a. Modify three variables - two variables are bound to their mid-ranges and the third
one is computed through symbolic manipulation.

b. Modify two variables by 2%, 10%, and 20%.

These examples demonstrate potential rule group organizations. Section 5 presents the

alternatives that were tried in order to improve the performance of the test case generator.

3.3 PARSER/SCANNER

3.3.1 BASIC INSTRUMENTATION

Whereas static information concerning the Module Under Test (MUT) is provided
to the Test Data Generator via the Parser/Scanner Module, run-time information is

obtained through the use of function calls inserted into the original source code. These

function calls are placed at the various decisions throughout a program in order to

determine the set of paths executed by a particular set of test data. The information
acquired by the function calls is written to an intermediate file that is read by the Test

Coverage Analyzer and converted to forms that are usable by the Test Data Generator and
the Librarian.

The decisions that are instrumented by QUEST are those consisting of Boolean

expressions in the following form:

LHS < relational operator > RHS.

These expressions are replaced by function calls that evaluate their truth value and return

this value to the calling program.
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A line of information is written to the intermediate file indicating the test number,

the decision and condition number, the truth value of the expression, and the values of the

left hand side and right hand side of the expression. These functions have the following

specification:

function relop(TestNum:integer;

DecNum: integer;
CondNum:integer;

LHS: Expr_type;

OP: Relop_type;

RHS: Exprtype) return BOOLEAN;

The functions are encapsulated in Ada GENERIC packages to facilitate parameter passing

and input/output of user-defined types. Currently, packages are available for integer,
enumerated, floating point, and fixed point data types.

The MUT is surrounded by a harness (i.e., driver program) that controls its execution
during testing. The driver is responsible for reading the test cases from a file and passing

this data to the MUT as arguments. Also, global data, out parameters, and return values

are written to a file for user inspection and regression test purposes.

3.3.2 INSTRUMENTATION FOR SYMBOLIC EVALUATION

Instrumentation for symbolic evaluation requires that the intermediate values of the

input parameters to the MUT be obtained at each decision in the program. Since Ada is

a strongly typed language, it is not possible to simply pass these parameters to the

instrumentation package because the number and types of the parameters vary according

to the makeup of the MUT. Also, it is not possible to declare the procedure as SEPA-

RATE to the instrumentation package, since the procedure must be declared inside the

MUT in order for the parameters to be visible. This problem was circumvented by creating

a procedure within the module under test and passing the procedure as a GENERIC to the

instrumentation package. The procedure only needs a single parameter -- the name of the

file to which the output is to be directed.

3.3.3 INSTRUMENTATION FOR MULTIPLE CONDITIONS

Instrumentation for multiple conditions requires the instrumentation package to be
extended to include a function to determine the overall truth value of a decision. For

example, the following decision:
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IF(a < bANDc > d) THEN

would be translated to the following statement:

IF decision(TESTNUM,and(relop(TESTNUM, 1,a, LT,b),
relop(TESTNUM,2,c,GT, d))) THEN

The function relop0 acquires information about the individual conditions, while the function

decision() acquires information about the overall decision.

3.3.4 AUTOMATIC INSTRUMENTATION

The instrumentation described here is currently being performed manually. Although

automatic instrumentation could be performed during the execution of the Parser/Scanner

Module, its implementation would require considerable effort which would greatly hinder

progress on the other substantial areas of the research and prototyping. Given the
instrumentation specified here, the development of an automatic instrumenter is seen to be

a relatively straightforward task for those in the industry who are specializing in the design
and development of Ada compilers. In fact, this could be integrated into the compiler and

debugger tools in a very efficient manner. For these reasons, it was decided that prototyping
of the automatic instrumentation would not be pursued immediately. However, the

requirements for automatic instrumentation become quite apparent from the manual

examples which are being employed to test the remainder of the QUEST system. Examples

of instrumented programs and source code for the instrumentation packages may be found

in Appendix B.

3.3.5 DIANA INTERFACE

The Parser/Scanner Module has four primary functions:

1) Compile a List of executables,

2) Extract input facts,

3) Extract condition facts, and

4) Instrument the source module.

The Verdix Diana interface is used to retrieve this information from an Ada library.

Diana is an abstract data structure containing information about an Ada source, and a set

of procedures for getting information from the structure. Once the user has selected the

system to be tested, the system is compiled using the -F (full Diana) option of the Verdix

Ada compiler. This option ensures that no information about the source gets "pruned" out

of the Ada library. The following subsections detail the primary functions introduced above.
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3.3.5.1 LIST OF EXECUTABLES

After the system is selected, the user is presented with a list of all of the executable

modules in the system. This list is created by the Parser/Scanner Module. The PSM

searches the Diana net, builds a linked list of the executables, and then passes it to the

interface to be presented to the user.

3.3.5.2 INPUT FACTS

Once the module to be tested has been selected, the PSM traverses the Diana net

for the module and retrieves information about the input to the module. This includes facts

about parameters and about global data used in the module. These facts are saved to a file

to be read later by the Test Data Generator. The saved facts include:

Parameter Name I Type Low Bounds High Bounds I

They are formatted as assertions to CLIPS [CLI87]:

parser_scanner_assertions "<modulename>"

( names <parml_name> <parm2_name> ... <parmn_name> )

( types <parml_type> <parm2_type> ... <parmn_type> )

( low bounds <parml_low> <parm2_low> ... <parmn_low> )

( high_bounds <parml_high> <parm2_high> ... <parmn_high>)

3.3.5.3 DECISION/CONDITION FACTS

Facts about every decision in the module are gathered and written to a file. The

Diana net is traversed in search of every decision in the module. Each decision is given

unique number (dec#) as is each condition within a relation (cond#). These facts are

formatted and saved for input into the Test Data Generator as follows:

decision condition facts "<module name>"

<dec#> <_ond#> ( <formatted condition> )

<dec#> <cond#> ( <formatted condition> )
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3.3.5.4 DIANA INSTRUMENTATION

Instrumentation at each condition in the module must provide information about the

results of the condition test. Currently, this instrumentation is done by hand. While

automating this process is a fairly straightforward, it would require more manpower than is

available on this project. The format of the instrumentation is expected to change as new

requirements are received. The current format of the instrumentation function is:

relop (< test# >, < dec# >, < cond# >, < LHS >, < op >, < RHS >)

The relative operation function 'relop' takes as parameters the test number, decision

number, condition number, left-hand-side of the condition, right-hand-side of the condition,

and the operation to perform. It writes to a file called "INTERMEDIATE.RESULTS",

which is later read by the Test Coverage Analyzer. The data written includes the test,
decision and condition numbers, the left and right sides, the result of the operation (TRUE

or FALSE), and the test data which caused this condition to be evaluated. It is encapsulat-

ed in Ada GENERIC packages to facilitate parameter passing an input/output of user-

defined types.

'Relop' returns the results of the condition evaluation, so that it can be inserted as

a function call in place of the condition. For example,

if (y*10<3) then ...

would be converted to:

if (relop (1, 5, y*10, 3, "<")) then ...

3.4 COVERAGE ANALYZER

In order to experiment with the effects of altering the knowledge about the conditions

of a program under test, three categories of rules have been selected. The first category of
rule reflects only type (integer, float, etc.) information about the variables contained in the

conditions, since they generate new test cases by randomly generating values. As

implemented, these rules determine lower bounds, upper bounds, and types of the variables.
A random value of the same type is generated, and the value is checked to be sure it is

within the range for the variable.

The second category of rule attempts to incorporate information from three sources:

(1) that which is routinely obtained by a parse of the expression that makes up a condition

(such as variable types and ranges), (2) information about coverage so far obtained, and (3)

best test cases from previous tests. A typical rule for this category would first determine
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bound and type information associated with a variable, calculate this range, and then

generate new test cases incrementing or decrementing the variable by a small fraction of its

range, and checking to see that the result is still in bounds.

The final type of rule utilizes information about the condition that can be obtained

by symbolic manipulation of the expression. The given rule uses a boundary point for input
variables associated with the true and false value of a condition. This value is determined

by using symbolic manipulation of the condition under test. Many values can be chosen that

cross the boundary of the condition and, as with best test case selection, a value is sought

that will not alter the execution path to the condition. In addition to best test case selection,

this rule base has additional knowledge to generate new test cases. The values of variables

at a condition are compared with input values of the variables used to reach that condition.

This added information is incorporated in the generation of new test cases.

Suppose that for an input variable x appearing in a condition under test, the value

of x at the condition boundary has been determined to be xb and the input value that has

driven one direction of the condition is xi. We do not know how x is modified along the

path leading to the condition since the value of x on input may differ from the value of x
at the condition. However, we are able to establish that the value of x at the condition is

xc. Provided the values lie in the limits allowed for values of x, the new test case is chosen
as"

+ e

where e is either 0 or takes on a small value (positive or negative).

In general, these rules first match type and symbolic knowledge about the condition,

information from the coverage table, and information about the values of the variables at

the condition. Using this information the value required to alter the condition's truth value

is symbolically computed. The new test case is generated by the formula given above, which

supposes that a corresponding linear change will occur in the value of x from its initial

value. The value of x is altered slightly in order to attempt to cross the boundary but not
change the execution path to the condition.

3.4.1 AUTOTEST AND THE TEST COVERAGE ANALYZER

The purpose of the Autotest module is to coordinate the activities of the Test Data

Generator (TDG), the module under test (MUT), and the Test Coverage Analyzer (TCA).

Autotest repeatedly calls the above procedures until all of the required test packets are

complete. The TDG and the MUT are covered elsewhere (Sections 3.2); the TCA is
described below.
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The primary job of TCA is to supply the TDG with the best test cases which have
been used to execute the MUT. It also accumulates data for reports after the test and

archives the results.

A best test case is chosen for each condition in the MUT. There can be several

different methods for choosing the best test case. Currently, two methods have been

implemented. The first is to calculate the distance each test case is from a border of the
condition in order to select the case which is closest to the border. For instance, if the

condition is

x'3 < 15

then the border is at x = 5, and that condition with test data that produces a value of x

closest to 5 is considered the best test case.

The second method for choosing a best test case involves the above procedure

augmented by steps for the avoidance of previously encountered conditions. In this

approach test cases are selected for closeness to the current condition and distance from all
of the previous conditions. The methods for selecting the best test cases are more fully
described below.

The TCA keeps a coverage table entry for each condition encountered in the MUT.
If a condition has not been encountered before, a new entry is created in the table. If it has

been encountered before, but with a different Boolean result, it is updated to indicate

complete coverage. The coverage statistics are based on the number of conditions in the
module under test, the number that are partially covered, and the number that are

completely covered.

Each condition entry in the coverage table contains references to the best test cases
for that condition. When a condition is first encountered, the driving test case is the only

test case for that condition; thus it is the best. As long as the condition is only partially

covered, the TCG will attempt to generate test cases which continue to exercise the

condition. When this occurs, the current test case will replace the previous best test case

if the criteria being applied indicate that it is "better." The table is not altered for

completely covered conditions since the TCG considers them to be completed.

After all of the test cases for a particular packet have been viewed and used to

update the coverage table, the table is searched for partially covered conditions, and the
associated best test cases are returned to the test data generator. The basic logic of
Autotest follows:

for each test packet
call the TEST DATA GENERATOR

call the MOD[_SLE U[,IDER TEST using the'test data
u
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call the TEST COVERAGE ANALYZER.
u w

The following logic is used by the TCA module:

for each intermediate results record

calculate the "goodness" values of the test case
if the condition is not in the coverage_table

install the condition
else

if the condition is not fully covered

update the condition using "goodness" values

for each condition in the coverage_table

if the condition is partially covered
return its best test cases to the TDG

accumulate data for test reports
archive the results.

Test case generation rule groups may be exhausted before a new coverage is achieved. This
failure can be attributed to two factors: inappropriate modification, and inappropriate best

test case. This former factor may be solved by adding more rule groups. The second factor

must be solved by selecting an alternative test case.

Since the selection of a best test case is based on heuristics, it may not be

appropriate for some situations. For this reason, instead of keeping the best test case only,

several "good" test cases should also be recorded for a partially covered condition. These
cases can be ranked according to a goodness definition or selected from different goodness
definitions. When a best test case has exhausted all case generation rules and no new

coverage is achieved at the target condition, an alternative case will be used.

This section continues with subsections which extend these basic concepts to decisions

which involve multiple terms.

3.4.2 TEST CASE GENERATION FOR COMPOUND DECISIONS

A branching decision may contain two or more Boolean conditions. This kind of

decision is called a compound decision. It can be simplified into a form of IF A AND/OR
B THEN do-1 ELSE do-2. A and B are both Boolean conditions and can be in a compound

or simple form. A compound form contains at least one AND/OR operator. A simple
form can be either a Boolean variable or an arithmetic expressions with a comparison

operator, e.g., <, >, =, etc. Like a simple decision, two things must be considered for the

compound decision: goodness measure of a test case at a decision, and test case generation
rules. These will be considered in the following two subsections.
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3.4.2.1 TEST CASE GOODNESS MEASURES

If a condition contains Boolean variable(s) only, the test case goodness measure

should be based on the sum of condition boundary closeness along the path leading to the

target condition. Since only Boolean variables are involved, closeness measurement cannot

be done at the target condition. However, if there is at least one arithmetic expression in
the condition, a normalized boundary closeness measure can be used. For example,

consider a test case, (x--12, y=-8, and z--8), and a statement, IF (x > -- 10) OR (y = < -10)

THEN do-1 ELSE do-2. The boundary closeness measure of each individual term is

calculated first. For the first term, (x > = 10), the measure is 112 - 10[ / (2 * MAX(1121,

1101) = 2/24; for the second term, (y -< -10), the measure is 2/20. The normalized
measure is simply the average of these two measures. At this point earlier definitions of

goodness can be applied.

3.4.2.2 TEST CASE GENERATION RULES

In a decision containing multiple conditions, the negation of the Boolean conditions

is not trivial. Consider the following two situations.

(1) IF a 1 THEN do-1 ELSE do-2

(2) IF a 1 and/or a2 and/or a 3 THEN do-1 ELSE do-2

In (1), a change of the branching can be achieved simply by changing the Boolean value of

a 1. On the other hand, in (2) the branching cannot always be modified by changing one
item. Since there are three conditions in (2), there are eight possible combinations of the

Boolean conditions. Among these combinations, some lead to do-1 and some lead to do-2,

depending on the context of the problem. When a branch is targeted for further coverage,
it will be required to assign Boolean values to all of the terms, i.e., a 1, a z, and %. This

assignment is not as simple as looking up the truth table of the condition. Since we try to
minimize the modification of a best test case, this must also be considered in the truth

value assignment of each condition.

Once the assignment to each condition is determined, test cases must be generated

to satisfy the requirement of each condition. Unfortunately this may involve solving a set

of predicates which has been recognized as an extremely hard problem, as referenced above.

In order to simplify the test case generation, the following heuristic rules will be tested:
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RULE-l:

IF a condition contains Boolean variables only

THEN change the values of those variables appearing in the input list of the
best test case, one at a time.

RULE-2:

IF a condition contains no Boolean variable

THEN consider each Boolean term individually and sequentially; first find the

boundary, then generate cases around the boundary.

RULE-3:

IF a condition contains both Boolean variables and non- Boolean terms

THEN 1. invert the values of the variables appearing in the input list of the best

test case, one at a time, and

2. consider each Boolean condition individually and sequentially; first find

the boundary, then generate cases around the boundary.

These heuristic rules will not always generate cases to cover all desired branches, but they

have been shown to be an excellent starting point for multiple condition test case genera-

tion.

3.5 USER INTERFACE

The QUEST User Interface has been implemented in XWindows on networked Sun
Workstations. XWindows allows the user to interact with the user interface through the use

of a mouse and pulldown menus.

The initial QUEST window provides the user with a number of options. As shown

in Figure 3.5, the main user interface contains options for four pulldown menus: Project,

Testing, Reports, and Help. The three bars on this window indicate the progress of the

testing (once testing is selected). Although the bars are given initial values at the start of

the application, they may be changed by selecting an option from the Testing pulldown

menu.
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3.5.1 PROJECT SUBMENU

The Project Menu allows the "project" to be selected. A project is a grouping of on

source module along with all of the supporting files needed for testing Ada. It must be

created or selected in order to begin using the interface. Selecting a project will provide the

user with a list of the ADA files in that project's directory. Once the user selects the file,

it will be compiled and prepared for execution. The Project Menu also allows the user to

create a new project. Other selections include closing projects, deleting projects, and exiting
the user interface.

When the "Project" options is selected form the User Interface Screen the pull-down

menu of Figure 3.5.1 will appear. These suboptions have the following functions:

New - creates an entirely new project.

Open - allows an existing project to be opened. This will produce the window shown in

Figure 3.5.1b, which gives the user the ability to select the Ada module to be tested.
Entries in reverse field are subdirectories. Their selection will lead to another similar

window shown in Figure 3.5.1c.

Close - closes an open project.

Delete - deletes an entire project (not enabled).

Quit - restores control to the User Interface Screen.

Project

New

Open
Close

Delete

Quit

Figure 3.5.1a Project Submenu
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Figure 3.5. lb Directory Option Window
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Figure 3.5. lc Subdirectory Option Window
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3.5.2 TESTING SUBMENU

The Testing Section is the heart of the user interface. It allows the user to start

testing, stop testing, and change the test metrics. When the "I'esting"option is selected from

the User Interface Screen, the testing submenu given in Figure 3.5.2a will appear.

To begin testing, select the "start testing" option given in the submenu. At this point,
the instrumented code will be executed and the resulting data will be cataloged. After each

iteration of compiling data, the bars on the User Interface Screen will be updated to reflect

the progress of the test. Testing may be stopped anytime by selecting the Halt Testing

option.

The two options on the Testing Submenu "Enter Test Case" and "Select Test Set" are

not yet operational. The former option is the logical point at which the user can be

prompted for the variable values of a user-defined test case. Similarly, the "Select Test Set"

option would query the user for a file containing a number of test cases. The

implementation of these options is essential to the finally functioning test system in that the

user should have the flexibility to override the test case generator, especially for initial test

case specification. However, while the implementation of these is quite labor intensive, it

would contribute little of theoretical interest, and therefore it has not been included in the

current prototype.

If the values for time, iterations, or coverage given on the User Interface Screen are

not desired, they may be changed through the "Set Test Metrics" option. Once selected, the

window will appear which is given in Figure 3.5.2b. Any of these three values can be altered

directly on the screen.

w

Testing

Start Testing

Halt Testing
Enter Test Case

Select Test Set
Set Test Metrics

Figure 3.5.2a Testing Submenu

u
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3.5.3 REPORTS SUBMENU

The Reports Option is used to generate reports concerning testing which has already

been done. When selected, the Reports Submenu given in Figure 3.5.3 will appear. Two

types of report generators are available: Coverage Reports and Best Test Case Reports.

Currently, these report generators are written for the VAX VMS file management system.
Conversion to the workstation environment is expected early in Phase 3.

Report

Coverage Report

BTC Report

Figure 3.5.3 Reports Submenu

u

3.5.4 HELP SUBMENU

The Help Option is designed to provide information about the user interface. The
user can select a general help or choose a keyword on which to find help. Since the help

is a scrollable window, searches may be easily conducted for the information required.

3.6 LIBRARIAN

The librarian routines for the Quest/Ada environment provide methods to easily

archive and restore data for a particular test set. The librarian is implemented in three

parts. The first is the code specific to manipulation of indexed records. This code has been

isolated as much as possible to allow it to be changed if necessary. The first implementation
uses a set of shareware B-tree routines known as BPLUS to manage indexed files. The

second part of the librarian code is the collection of librarian primitives. These primitives
serve as an abstracted interface to the specific file manipulation routines. This makes it

easier to replace the code for managing indexing while keeping the same coding style for

calling the librarian. The third and last part of the librarian is the code written specifically

to manipulate QUEST/Ada files. The first two parts are mostly free of application-specific

code, allowing them to be reused for other projects. In discussing the librarian and its

design, the QUEST/Ada implementation will be used as the main example.

This section will continue by presenting some basic concepts employed by the

librarian component of QUEST. A second section will detail the use of the Librarian.
Some intricacies of these routines will then be described, after which appears some notes

on its portability. The librarian routines are given and described in Appendix C.
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3.6.1 BASIC CONCEPTS

A collection of data files contain binary records which represent information that has
been archived from QUEST. These data files are known as "fiat files" because they do not

contain indexing information. Separate files exist to aid in indexing the data files. The

name of an indexing file is the name of the data file concatenated by the key number that

the index file represents. Key numbers start at zero (which is usually the unique key for the

data file). For example, if the file name was testl.dat, the index file name for key number
zero would be testl.dat00, and the index file name for key number one would be testl.dat01.

All of the files are collected under the same directory. For QUEST/Ada, the file

names are constructed by beginning with a given system name and concatenating onto it an

extension representing the data contained in the fiat file. For example, if the system name
was FTRANSFORM, the file names would be:

Coverage Table:
Intermediate Results:

Test Data:

Test Total Results:

FTRANSFORM.COV

FTRANSFORM.MED

FTRANSFORM.DAT

FTRANSFORM.RES

Remember that the index files for the data files are the same except that the key number
is tacked onto the end of the file name.

All of the routines return a result code. Basically, if the return code is below zero,

an error has occurred. If the return code is zero, the function has executed without any

bothersome events. If the return code is greater than zero, some event has occurred which

might be important information for QUEST users (an end of file, for example). All of the

return codes are established in the header file librarian.h by #define statements.

A data file can have more than one key. This simply means that the data file has an

additional index file that can be used in another way to search through the data file. An

index file can contain either unique or non-unique keys. At least one index file (usually

number 00) should be unique so that specific records can be found. The keys are a

composite collection of members in the data record.

!

3.6.2 USING THE LIBRARIAN

Prior to use, the librarian must be initialized, and the function lib_init0 is called to

allow the librarian to organize its data structures. The routine lib_directory0 may be called

to set the directory path in which the librarian files should be put. The function lib_set0
is then called to establish which archive is to be opened or created. To start an archive

from scratch, it is a good idea to call lib_remove0 after calling lib_set0 so that all existing
archive files can be deleted.
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After an archive has been set, its data files can be opened. The function lib_open()

is passed a number representing the file to be opened. A number of options exist to read
records from the file. Before attempting any read (including the initial sequential read), call

the routine lib_set_key0 to tell the librarian the index file by which the data file will be

indexed. Sequential reading is enabled by using two steps. First, call lib_read0 with the
mode LIB FIRST REC to rewind the offset into the index file to the first record. This will

also retrieve the first record from the file, if possible. To read all records after the first, call

lib_read0 with the mode LIB NEXT REC. This can be continued until the return code

from lib_read0 is LIB_EOF. To readkeyed files, first call lib_set_key0 to set up which key
and which key components are to be employed for searching. Then call lib_read0 with one
of two modes: LIB FIRST MATCH or LIB NEXT MATCH:

LIB FIRST MATCH

LIB NEXT MATCH

will search the index file for the first occurrence of a matching

key and if successful, it will retrieve the data record.

is used for index files in which the keys are not unique: more
than one record can have the same key.

LIB FIRST MATCH is used to find the first match, and lib_read0 can be called with the
mode LIB _XT MATCH to find all subsequent matching records. When no more

records exist, LIB _IO MATCH is returned.

Writing records to a file is much the same. First, all of the key contents for the
record must be established by calling libset_key0 for each one. This is important. Upon

calling lib_write(), all keys for the record are assumed correct and written out to their

respective index files. This means that if a record has three keys, then lib_set_key0 needs

to be called for key 0, key 1, and key 2. Then the record can be saved via lib_write(). Note

that lib_write0 might "fail" if a particular key is supposed to be unique but already exists
in the index file. In this case the data record is not written to the data file.

The function lib_close0 should be called when record manipulation for a data set is

complete. Under the BPLUS indexing system, it is very important that open files are closed.
This is due to the indexing routines employing local "caching" of index information. If the

files are not closed, this caching information may not be written out, and the index file can
become inconsistent. The routines to terminate association with an archive or to shutdown

the librarian determine if files are still open, and if so, they close them.

The function lib_open0 is additive for a data set. If lib_open0 is called more times

than lib_close0 is, a data set has a positive open count. It will not actually be closed until

the same number of calls to lib_close0 as there were to lib_open(). On shutdown, any files
with non-zero open counts are considered opened, and an attempt will be made to close
them.

w
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3.6.3 DETAILS OF THE CODE

The librarian is designed to rely on another set of code to do the detailed work of

creating indexes into a file. The librarian routines merely take a binary collection of data

and save it somewhere, leaving a method to quickly find the data again later. The librarian

was first designed using VAX RMS, but this reduced portability. Therefore, the BPLUS

collection of B-tree index file management routines were employed.

Any given binary data record must possess the following attributes:

.

2.

3.

4.

5.

A data set number,

A set length (in bytes),
A set number of keys (at least one),
A data file to be stored in, and

Components that are used to create keys.

The librarian routines use the data set number for an index to access a global structure

called lib_glbl. This global structure is very important because it is used to store descriptive
attributes about each active file. This includes record size, number of keys, and the keys

that have been set for the given record. Currently, lib_glbl is initialized in the function

lib_b_setup(), which is called during execution of lib_set(). The keys for a record, although
likely made up of components within the record, are not stored with the record in the data

file. The function lib_set_key0 needs to be called for each key in a record before the

record is written out. Each time lib_set_key0 is called, the associated key string in lib_glbl

is updated.

The global lib_arch is used to keep track of less specific details, like the archive

directory, archive name, and the open count for each file (0 means closed, greater than zero

represents the number of times lib_open0 has been called for the file).

If necessary, the index code can be changed while the method of using the librarian
can be maintained. Changes to the global structures and to the librarian functions will

definitely be required, but other code calling the librarian should be minimally affected, due

to the basic functionality of the librarian primitives remaining the same.

The QUEST/Ada test data is read into a union type (lib_numeric_type) which is a

joining of all of the integer and floating point types.

Some of the record types are '"olocked", i.e., the data are broken into a number of
individual, fixed-size records. This is due to some of the information stored in the

temporary files are variable length. Part of the record's information is its block number.
The define LIB BLOCK SIZE is used to decide how much information is allocated for each

block. Also inc7uded in-ihe record is a count for how many items in the block are used.

If this count equals the LIB_BLOCKSIZE, then the next block should be checked for
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existence. Once the count is lessthan the LIB BLOCK SIZE define, the last block in the
m

data is reached.

3.6.4 BPLUS PORTABILITY NOTES

Much of the source code employed in the Librarian was originally intended for

execution under MS-DOS. It was developed for the Microsoft C and the Borland Turbo C

compilers. For the most part, standard C routines are employed for the file management.
These routines, commonly known as the "UNIX" class of file routines, include open(),

read(), write(), and close(). These routines should be standard in almost any

implementation of a C compiler. Porting to the VAX required the deletion from the
BPLUS.H and the BPLUS.C files of all instances of "cdecr' and of "Pascal". The #include

statements had to be rearranged to either not include a file that did not exist on the VAX

or to remove a "sys\" directory specification. Additionally, a filelength0 function had to be
written to allow the length of a file to be determined given the file's descriptor number. A

phony #define for O BINARY has been added so that an open() call succeeds. This binary

specification is req_red for MS-DOS and other compilers that default to character
translation for their data files.

An important note that might affect portability in the future has to do with the

memcpy0 function. In order for the code to run correctly on a Macintosh using the THINK

C compiler, key memcpy0 calls had to be changed to memmove0. This is because the
ANSI standard of memcpy0 now fails when overlapping memory space is involved. The

function memmove0 is specifically supposed to handle copying involving overlapping

memory.

The BPLUS.H and BPLUS.C files contain function prototypes for the BPLUS

functions. Only a compiler that contains the ANSI extensions to handle function prototypes

can deal with their presence. Older style compilers (K&R vintage) will abort compilation

on encountering the function prototypes, requiring the declarations to be modified in order

for the program to compile. Only the arguments contained within the prototype declaration
need to be removed.

One final portability note is that the routine vsprintf0 is called print the ASCII

representation of the key string (required for the BPLUS routines). This routine, although

standard now, may not exist in older C libraries.
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4.0 CONCURRENCY TESTING FOR ADA PROGRAMS

One of the main goals of concurrent program testing, debugging or analysis is to

detect tasking errors -- mainly, deadlocks and concurrent access of shared variables. Like

sequential programs, errors may be introduced by specifications or implementations.

However, the testing of concurrent programs is more difficult to achieve. In a sequential

program, a reachable error can be driven and eventually detected if the right set of input
data (test cases) are provided. In a concurrent program, the testing is further complicated

by the dynamic nature (and uncertainty) of the environment caused by both hardware and
software factors. The hardware factors include processor locations and configuration. The

software factors are attributed to the task scheduler. When a program and an environment

are provided, the tester has little or no control over these factors. Because of this, these
factors cannot be considered in our testing paradigm. However, if the given program is

retested under the application environment, these factors should have a minimum effect.

There are two fundamental approaches to Ada concurrency testing. They are the

static analysis and the task monitoring. In the static analysis, all possible task states of a

program are explored and checked for tasking deadlocks [STR81, TAY83]. A common

problem of this analysis is the unmanageable number of states. In this type of analysis, a
program is not actually run; it is simply analyzed syntactically. Because a syntactically

possible state may not be semantically possible, thus a large portion of the analysis effort

may be wasted. In order to improve the search efficiency, a symbolic evaluation process can

be integrated with the static analysis to prune semantically impossible states [TAY88]. The
execution of the static analysis and symbolic evaluation can be done in serial or interleaved

fashion. In the former fashion, the symbolic evaluation would not be executed until all

states have been generated. On the other hand, the interleaved method allows portions of

the state generation and the symbolic evaluation to be performed in turn.

In the task monitoring approach, a program is actually run [CHE87, GER84, HEL85].

A separate run-time monitor records the task states and interactions. The task analysis is
done either in real time or after the program execution. Similar to the conventional

software testing, "instrumentation code" must be inserted in the source program for the

tasking information collection purpose. Unfortunately, the extra codes may result in

incorrect representation of the original tasking states and errors not detected [TAY88].

4.1 CONCURRENCY TESTING MEASUREMENT

One important aspect of software testing is the thoroughness of testing. However,

because of the dynamic feature of a concurrent program the program testing coverage is

difficult to measure. In particular, the task state space can be so large that it is impossible

to compute its size. The literature review and research to this point has led to the following

potential measurements for "concurrency" coverage:
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Task entry coverage: Each syntactically identifiable task is recognized as a task unit.
If a task contains other tasks, they are recognized as separate task units. This

concept is analogous to statement coverage in conventional testing. The difference
is that task units are identified instead of program statements. Most tasks must be

called before they are activated. For this reason, task entry coverage measures the

completeness of tasks being called. It is important to note that a task unit may be

called by different program units. Therefore, complete task coverage does not

guarantee complete statement coverage. This measure can also be viewed as

rendezvous coverage.

Task calling statement coverage: A task calling statement requests service from a
task unit. This measurement gives the coverage completeness of all possible

communication links between tasks.

Task state space: If the size of possible (or feasible) state space can be computed,

the coverage of state space may give a good measurement of the testing

completeness.

4.2 DATA STRUCTURES FOR CONCURRENCY TESTING

Three kinds of information are needed for the proposed concurrency testing: program

structure, active-task dependencies, and task coverage. The program structure presents the

syntactical relationships among task units of the program under testing. The DIANA

(Descriptive Intermediate Attributed Notation for Ada) package is used to provide this data

structure in the proposed implementation. The active-task dependencies data structure
records the dynamic behaviors of all active tasks. This information is used to analyze

possible faulty behaviors, such as deadlocks and concurrent access of resources. A graph

representation may be needed for this purpose. The task coverage information indicates the
completeness of testing. Task coverage is based on the testing goals. As described earlier,

this may include the task entry, task calling statement, task space, or any combinations of

these. Coverage tables will be used for this purpose.

There are two types of coverage tables in addition to the structure described above.

The first type is the summary table which lists all task units. In this table, each task unit is

marked either as covered or not covered, indicating the task entry coverage. The second

type of table is for each individual task unit. It contains two columns. One column
indicates the task units that the titled task may call, while the other column indicates the

task units that may call the titled task. Illustrations for these tables are given in Tables 4.2a
and 4.2b.
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Table 4.2a Task CoverageSummaryTable

Task name
Task-unit-1

Task-unit-2

Task-unit-n

Covered

X

Note: An 'X' indicates that a task unit has been covered. In this case, Task-
unit-2 has been covered.

w

Table 4.2b Individual Task Coverage Table

Task-Unit-k

Call-task Mark Called-by Mark

Task-unit-a 1 Task-unit-b_

Task-unit-a 2 X Task-unit-b 2 X

Task-unit-a m X Task-unit-bn

Note: This example indicates that Task-unit-k has called Task-units 2 and a m,

and it has been called by Task-unit-b 2.

4.3 TOOL REQUIREMENTS

In order to achieve and measure the task entry coverage and the task calling

statement coverage, task dependency information of the tested program must be provided

to the system. This information tells how a task can be activated. When a task is selected

as a candidate for testing coverage, this task and its parent task must become active first.

Although most tasks become active through task declaration, some run-time dependent tasks
must be activated through program execution. This tasking dependency information also
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indicates the tasksthat are called by each individual task. This is needed for the task calling

statement coverage.

The DIANA package that is currently being studied may provide all the needed

information. One of the major purposes of DIANA is to provide an intermediate

representation of an Ada program. A side benefit of using the DIANA package is that it

may make automatic instrumentation possible within the QUEST project. This is because

DIANA provides pointers from the structure nets to the source code. With the pointers,

appropriate instrumentation statements can be inserted.

4.4APPROACHES

The following tasks must be accomplished to achieve concurrency testing: (1)

designing a coverage metric for the program under test, (2) developing a procedure for

determining the next coverage candidates, and (3) performing tasking control and/or

generating test data to drive the desired coverage.

The coverage measurement may use any of the criteria mentioned above. When the

intermediate program representation is derived (e.g., by DIANA), a table-like coverage
metric can also be built. This metric will be similar to the branch coverage table of the

current QUEST/Ada.

The second task is to determine the next coverage candidates. A coverage candidate

can be a single task unit or a particular sequence of task units. If the invoking sequence of
task units is not specified, the sequence must be defined before the tasking behavior control
or the test data can be determined. This task may be divided into two parts, coverage

candidate identification and sequence (or path) identification.

The last phase is to perform the tasking behavior control or to generate test data that

will drive the desired coverage. These approaches will be described in the following
subsections.

4.4.1 TEST DATA GENERATION APPROACH

Static analysis and task monitoring represent two extremes in Ada program testing

or debugging. The static analysis approach attempts to explore and analyze all possible (or

feasible, if with the symbolic evaluation) tasking states. On the other hand, task monitoring

records and analyzes only one run of the program execution at a time. From another

perspective, the static analysis approach analyzes the whole input space and the task

monitoring approach analyzes only one point in the input space. Here, the input space

represents any input parameters over which a user of the program has control. The search

space for the static analysis is too large for reasonable effort, and the space for the task
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monitoring is only a point. A rational compromise is to settle somewhere between these
two extremes.

Since each task monitoring cycle needs input data (or a test case) to drive it, a more

thorough testing can be achieved by providing test data for more task monitoring cycles.
If the test data is well designed, representative task states can be monitored and analyzed.

While many task monitoring and deadlock analysis approaches have been reported, our

research will emphasize test data generation for task monitoring since this shows the most

promise for success consistently with the current QUEST/Ada approach.

The QUEST/Ada test data generator is designed for program unit testing. A

program unit can be a task, subroutine, or program body. A set of test data is generated

for a program unit to ensure branch coverage. During the execution of an Ada program,
several tasks may be active at the same time, and these tasks may belong to different

program units in the source code. For an active task that requires input data, it will be

appropriate to use the test data generated for the involved program units. Since each

program unit has a large number of test cases, combinations of these test data from various
program units will provide a wide variety of "concurrency" coverage. The following section

will demonstrate the methods to be applied to producing the required coverage.

4.4.2 IRON FISTED TESTING APPROACH

The fundamental philosophy of the proposed "iron fisted testing" is to drive Ada

program execution in a way that the desired "concurrency" coverage can be achieved. When

a task event happens, a specially designed scheduler will determine the sequence of tasks

to follow. Possible actions include continuing the current task, blocking the current task,

activating a blocked task, and forcing the execution to follow a particular direction. The

decision is based on the current tasking state, the current coverage status, the program

structure, the task priorities, and the desired goals. These criteria will be encoded in

production rules as is currently done for test case generation. The preconditions of a rule

define its applicability, and the consequences specify the actions to be taken when the rule

fires. The following subsections explain the potential actions of the scheduler.

L_

m

4.4.2.1 TASK PRIORITY

When multiple tasks are available for execution, task priorities will be used to

determine which tasks should be executed. For this reason, priorities will dictate how the
iron fisted testing proceeds under these circumstances. The ultimate purpose of these

priorities is to achieve the desired goals efficiently. Sample priority assignment principles

follow (in descending order):

1. A task which leads to the unblocking of other tasks,
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3.

4.

5.

determine a priority assignment.

program structure.

A task which leads to a desired coverage,

A task which has not been executed before,

A task which may be called by other tasks, and the lowest priority,

A task which does not interact with other tasks.

From these principles it can be seen that various information are needed to
These include coverage tables, task states, and the

4.4.2.2 TASK BLOCKING

A task may be blocked naturally, due to the built-in Ada scheduler, or it may be

blocked artificially by the iron fisted scheduler. A naturally blocked task must be unblocked

by the built-in scheduler. An artificially blocked task must be reactivated by the iron listed
scheduler. At the current stage of this project it is not clear whether it is necessary to have
an iron fisted scheduler that blocks tasks. It seems that the blocking of a task will only

eliminate the coverage that would have been achieved. The question of whether additional

coverage can be achieved by blocking tasks is still in need of further study.

The two cases in which it is clear that artificial task blocking may be needed are: (1)

there are too many tasks active, and (2) a task does not have interactions with any other

tasks. The first case may help reducing the task state analysis complexity. While a task of

case 2 does not have impact on the concurrency behavior of the program, task blocking may

be necessary for force its instantiation.

4.4.2.3 INITIALIZATION OF TESTING

Before the iron fisted scheduler performs the tasking control, an initial execution of

the program is required to provide data upon which the scheduler can function. This can

be achieved by letting the program run freely for a limited time, e.g., 1 minute. During this

time, the coverage information is recorded. After the time limit, the scheduler will perform

the tasking control based on the achieved coverage to that point.

4.4.2.4 SCHEDULING POLICIES

The major portion of tasking control is to force a particular task selection. This will

generally be required when the execution encounters a "select" statement. As mentioned

earlier, task blocking may not be essential in improving coverage. If there is more than one

alternative in the select statement, task priorities will be assigned to each task unit. Some
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scheduling examplesare given in the Figures 4.4.2a-e. These will be further refined in
Phase 3.

In these figures, an '*' indicates that a task has been exercised before and an 'o'

indicates that a task is ready for execution (or open).

Case-1

_ Select

W

--°>a

---> b

°°->C

;O

End

Figure 4.4.2a If task-b is the only open task and it has not been exercised before, it will be
executed.

Case-2

Select

---> a ;*,o

---> b

--->C

End

Figure 4.4.2b If task-a is the only open task, and it has been exercised before, and the same
task is requesting service from task-a, then task-a will be blocked, otherwise
it will be executed.
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Case-3

Select

-°->a

---> b

--->C

End

Figure 4.4.2c

ol

;*, 0

°8

If all tasks have been exercised before, the first open task will be executed.

Case-4

Select

---> a ;o

---> b ;*, o

--°>C

End

Figure 4.4.2d If multiple tasks become open at the same time, then the task that has not
been exercised before will be executed.

Case-5

Select

--->a

--->b

--->C

End

;O

;o

;o

Figure 4.4.2e If multiple tasks have become open at the same time and no task has been

exercised before, then one task will be selected arbitrarily for execution.
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5.0 EXPERIMENTAL EVALUATION

(Note: All figures and tables in this section appear after the narrative.)

The current prototype handles only a Pascal-like subset of Ada (i.e., no concurrency

constructs). Only subprogram input parameters are considered as input to the module under

test (MUT), and input is restricted to the integer and float data type. The system has been
tested on various Ada programs. The results of running the prototype system on three such

Ada programs are presented in this section. The Ada programs were designed to make

value assignments to the variables affecting the condition branches in order to complicate

complete solutions and make branch coverage difficult to determine. For example, the third

Ada program was designed with function calls in the conditions, which makes symbolic

determination of input values to alter the condition impossible to determine.

Figure 5.0a shows a test program graphically pretty-printed with a Control Structure

Diagram (see Cross, J.H., Morrison, K.I., May, C.H., and Waddel, K.C., " A Graphically

Oriented Specification Language for Automatic Code Generation (Phase 1) "Final Report,
NASA-NCC8-13, Sub 88-224, September 89). Figure 5.0b shows the condition branching

graph that can be abstracted from this control structure diagram. In order to experiment
with rule sets reflecting various testing strategies, and to provide a basis for comparing these

strategies, rules were grouped into categories consisting of the following:

a. Rules that produce new test cases by making random changes to the values

of the input variables. These rules produce random values within the range

of the type of the input variables. These values are independent of any

previous test cases.

b. Rules that take the best test cases for conditions and generate new test cases

by incrementing and decrementing the input variables by a percentage, as
discussed in Section 3.2.1. For results reported here, the rules increment and

decrement input variables by 40% of their value rather than a percentage of

their range.

C+ Rules that symbolically evaluate values of input variables at conditions,

finding solutions that will alter the branching, and generating new values for

input variables that are clustered around these solutions. These rules

implemented the ideas that were discussed in Section 3.2.2. The rule set
used in these tests did not take into account conditions in the execution path

leading to the condition under test and it's associated best test case. Rather,

it utilized only information about the boundary value of the condition under

test and generated new test cases as described next.

=

v
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Given a condition, the best test case for that condition, and an input variable, the

value of the variable at the boundary was symbolically determined. Then, keeping the other

input variables fixed, new test cases were generated by supplying the boundary value of the

input variable as input. Additionally, this value was incremented and decremented by a

small amount to provide two other test cases. These rules were applied to each input

variable appearing in the condition.

For each of the above rule strategies, Figure 5.0c shows the results of execution of

the prototype. The table reports the test cases for which one of the three strategies found
new branches in the Ada program. Because all three rule sets were initialized with the
same initial test cases, the first test case covered the same path through the code. On the

third test case, for example, the table shows that random test case generation rules found

another path through the code adding three more branches to the number of branches

covered by this rule set.

Figure 5.0d graphically presents the information from the table with the y axis

showing the percentage of the 20 branches which were covered by the test cases. Note that
the x axis is not a linear scale, and as such, the graph does not accurately reflect the

relative speed with which maximum coverage is achieved.

Figure 5.0e and f show the code and flow graph for the second Ada test program, and

Figure 5.0g presents the results of the three testing methods. In this test, complete branch

coverage was achieved by the symbolic evaluation rule set in 21 test cases. The increment/-
decrement rule set found the final branch on the 87th test case, and random test case

generation was considerably worse. In the flow graph, the conditions have been numbered

as they were during testing and combined with Figure 5.0h, which shows the actual

conditions covered following the conclusion of the testing. We can see, for example, that

random testing failed to find the true branch of condition three, and consequently could not
cover conditions four and five. Random testing also failed to uncover the true branch of

condition six before each of the other rule sets had found complete branch coverage.

Figure 5.0i shows the percentage coverage graph for the second Ada program. For

the third Ada program, the code and flow graph are given in Figure 5.0j. As in previous

examples, Figures 5.0k, 1 and m show the results of testing this code with the three rule sets.

In all three test programs, the rule based testing using heuristic rules reflecting
increment/decrement or symbolic evaluation strategies outperformed random test case

generation. The symbolic evaluation strategy did not always outperform the increment

decrement strategy, but when it failed (in test three) to obtain coverage for the number of

tests run, it appeared to be only slightly behind the increment decrement strategy. The
reason for failure in test three using symbolic evaluation was the call to the user function

as part of a condition. Since the symbolic evaluator has no idea what the function does,
it is unable to successfully determine a branching condition.
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*** GRASP/ADA VI.0

with text_io, instrumentation;

L use text_io;

[procedure testl( w: in out integer; x:
_ z: in out integer) is

File: testl.a.csd Page: 1

in out integer; y:

function user_f( a : integer) return integer is

temp: integer;

begin

-- temp := a / i00;

-- return (temp);

.end user_f;

gin

if x > 5 then

--_while x > 5 loop

i IF z := z + 10;

U end loop;
i

i I elsif x = 1 then
if z < x then

-- z := z + 20;

else

-- z := x;

-- x := x - i000;

end if ;

if x <
then

-- x := x + user f(z) + y;

s! := z + i00;user_f(z) * y;

end if;

• := user_f (z) y;

end if;

_ y < 300 then

: z := z * 2;

! Xi := x * 9;

S

.= Z * 3;

.= X * 12;

end if ;

--_if2i_ * y + z + 6 thenif w > i00 then

q

in out integer;

_ Figure 5.0a Ada Source Code for Test Program 1



*** GRASP/ADA Vl. 0

i
E

J_

!! ,
1i E

! :

i
i
i

x := X + i0;

_ w > 90000 then
y := y + 2 - i00;

i

• := y + 2 - i00;

end if;

u e_se
• x := user_f(y) + z;

end if;

elsif y > I0000 then

i_-- Y := Y - i0000;
i

end if;

end testl;

File: testl.a.csd Page: 2

Figure 5.0a Ada Source Code for Test Program 1
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Figure 5.0b Flow Graph of the First Test Program



Test Case inc/Dec by 40% Random Symbolic

! ,

,

3,

7,

8,

15,

21,

27,

52,

56,

76,

135,

232,

870,

1105,

5, 5, 5

5, 8, 5

5, 8, 8

5, 9, 8

8, 9, 8

8, 10, 8

8, 10, 11

8, 10, 12

8, 10, 13

8, 10, 15

8, 10, 17
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Figure 5.0c Results for the First Test Program in Table Form
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*** GRASP/ADA Vl. 0 File: test2.a.csd Page:

with text_io, instrumentation;

use text_io;

procedure test2( x: in out integer; y:

is

in out integer; z: in out integer)

tl, t2 : integer;

function user_f( a : integer) return integer is

temp: integer;

begin

-- temp := a / i00;

_- -- return (temp);

.end user_f;

begin

x := x - 100;

tl-=, y - 100;

t2 := z - i00;

while x > 1 loop

x := z - 2000;

if y < i0 then

if y > -5 then
i
i Y := Y + t2;

[ loopi

i Z := Z + abs (y);

i tl := 2 *y;

! if z > 19950 then

i Y := Y + I0;

i
i else

I y := y- I0;

!
I end if;

t z := z - I000;
z

!' exit when z > 20000;

l end loop;|

i

[ else

y > -20 then
z := z - i0000;

s: := z - 20000;

end if;

end if;

end if;

y := x + z + user_f(t2);

z := user_f(y) + user_f(tl);

end loop;

if y < I00 then

Figure 5.0e Ada Source Code for Test Program 2



*** GRASP/ADA VI. 0

/ end if ;
l

Lend test2;

File: test2.a.csd Page: 2

Figure 5.0e Ada Source Code for Test Program 2



Figure 5.0f Flow Graph of the Second Test Program
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1, 9, 6, 9
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4, 9, 8, 11

9, 12, 8, 13
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21, 13, 8, 14

87, 14, 8, 14

Figure 5.0g Results for the Second Test Program in Table Form



p..

(D
,-a
C_

,-a

r-t

00

0

.p

"0

0
o

V

0

CQ

k_

kO

q-4 -_ -_

u")

q-i _ --_ -t<

C_

q-4 --_ -_ -t<

0 _ _
"0

_ H _

E

L.

L

_m

I,-.

0

_nm

o



F7

w

O

I
I o

O _

C:_z

O

>
o

(1)
C_

<D

\

i

CO

,,---4

C_2

C_2

,,---4

CD

,,---4

CD

CD

o

_>

° ,-..w

O

>-_

E
o

C_

!

i

Figure 5.0i Results for the Second Test Program in Graphical Form



*** GRASP/APA V1.0 File: test3.a.csd Page:

procedure test3( a: in out integer; b: in out integer; c:

d: in out integer) is

in out integer;

bl

function user_f( a : integer) return integer is

temp: integer;

begin

-- temp := a / i00;

-- return (temp);

end user_f;

gin

if c -- d then

-- d :_ a * b + c;

-- if b < d then

-- b := b - c;

--d :=b- d;

__< ]if c > 9950 then

c := c * i00;

b := b - d;

d .'= 2 * b * 3 * c;
I

else

C .= C * 400;

-- d := 2 * b * 2 * c;

end if ;

:=d+ ;

end if ;

--b := O;

-_ if a > 5 then

--4 if a < user_f(1300) then

_ : > user f(700) then
:= a ---d - user_f(c - 50);

• :-- a + d + user f(c + 50);

end if;

else

-- a := a - d - user f(c - i00);

end if;

else

-- a := a + d - user_f(c);

end if;

Figure 5.0j Ada Source Code for Test Program 3



*** GRASP/ADA VI. 0 File: test3.a.csd

L_else

-- d := a + b;

--_if b > 100 then

_--- b := 2 * c;

--d := d + b;

!'
L else

• .- b := i000;

• - -- d "= d + b;

• _ if c > user_f(9950) then

• • c + 105;

-- d := 2 * b * 2 * c + 3;

- - e_se

- -- c :: c - 105;

• d := 2 * b * 2 * c - 3;

end if ;

end if;

> 0 then

a

:= a - b + user_f(d);
s

-- a := c + d;

i--_if a = -i00 then

a :- a - b - user f(d - 50);

end if;

end if;

end if;

_nd test3;

Page: 2

Figure 5.0j Ada Source Code for Test Program 3
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14, 14, 8, 10

35, 14, 8, 12

85, 14, 8, 13

108, 14, 8, 14

116, 15, 8, 14

240, 16, 8, 14

Figure 5.0k Results for the Third Test Program in Table Form
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6.0 PROJECT SCHEDULE

F

6.1 REVIEW OF PROJECT GOALS

The primary goals of software support tools for Ada are to improve software quality
and reliability as well as increasing development efficiency. Phase 1 of the current project
designed and prototyped an environment to facilitate expert system assisted testing of Ada
code. A formal grammar specification of Ada and a parser generator were used to build
a preliminary Ada source code instrumenter. A prototype rule base was developed using
the CLIPS [CLI87] expert system tool, and the prototype performed test data generation on
instrumented Ada programs using a feedback loop between a test coverage analysis module
and an expert system module. The expert system module generated new test cases based
on the information provided by the analysis module. The result of Phase 1 was the
demonstration of the feasibility of the rule-based unit level testing paradigm through a

complete system prototype.

Phase 2 of the project designed and evaluated the use of more sophisticated rule
bases, formed a preliminary design for a concurrency testing approach, and established
contacts with NASA subcontractors currently developing Ada software. A more
sophisticated rule base developed to model Ada programs as abstract functions was
developed using symbolic evaluation of the source code conditions. This rule base has the
ability to handle several mathematical programming constructs more efficiently than the
original prototype rule base, which was itself refined. The interaction of the two rule bases
has been studied to develop rules to further optimize the expert system module. A

reliminary design for concurrency testing has been developed, analyzed, and refined. On
ecember 5, 1989 a meeting was held with Mr. Ken R. Durme, Principal Engineer of

Boeing Aerospace to evaluate the needs of the NASA subcontractor's programming
environment. The need to develop a workstation prototype was discussed, as well as the
applicability of various automated testing approaches to the Boeing application environment.

The goals of Task 1, Phase 3 are: (1) to further refine the rule base and complete
the comparative rule base evaluation, (2) to implement and evaluate a concurrency testing
prototype, (3) to convert the complete (unit-level and concurrency) testing prototype to a
workstation environment, and (4) to provide a prototype development document to facilitate
the transfer of the research technology to a working environment. The proposed approach
to achieving these goals will now be discussed.

6.2 RESEARCH APPROACH

This phase of the research includes the following subtasks.

1. Refinement of the rule base.

The symbolic evaluation rule base developed in Phase 2 is capable of generating test
data for unit-level testing which obtains coverage that is very difficult to achieve with
standard test case generation. However, it is clear that modifications of the rule base could
lead to even better sets of test cases (i.e., those which lead to greater coverage, or the same
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coverage with fewer test cases). Refinements to the symbolic evaluation rule base will be
developed and implemented using the CLIPS expert system tool in an attempt to establish
rule bases which improve upon the current system. Additionally, new rule-based testing
methods will be evaluated for effectiveness in generating additional unit-level coverage.

2. Completion of the rule base evaluation.

The comparative evaluation of the various rule-based testing strategies will be
continued and completed. The completed evaluation will qualitatively discuss the strengths
and weaknesses of each rule and rule type, and will quantitatively present the effects of
interacting rule bases on the unit-level coverage of a variety of Ada programs. The capstone
of the quantitative evaluation will be an attempt to identify an optimal general rule base
across a cross-section of testing paradigms and programs.

3. Implementation and evaluation of a concurrency testing prototype.

A preliminary design for a concurrency testing prototype has been developed in
Phase 2 of the project, and this design will be refined and implemented using concurrency
tasking information provided by the Verdix DIANA Ada interface package. The
concurrency testing approach will provide current history coverage information through the
use of the "iron-fist" task scheduling monitor which will force determinism into the Ada
rendezvous by locking all but one possible rendezvous in the case of multiple rendezvous
selects. This approach, combined with the unit-level testing approach already developed in
Phases 1 and 2, will initially cover all rendezvous. The rendezvous coverage prototype will
be evaluated to determine the possibilities of extending the coverage metric to a more
general case, such as Taylor task histories.

4. Development of a workstation-environment prototype.

The meeting conducted with Boeing during Phase 2 of the project indicated the need
for a workstation environment for the testing prototype. This workstation environment will
be developed in Phase 3 of the project. In addition to providing a new user interface which
reflects current user interface design techniques, the development of the workstation
prototype will afford the opportunity to expand the features of the prototype. One
important expanded feature will be the use of the Verdix DIANA Ada interface package
in the place of the current attributed grammar in the parser/scanner module. It is projected
that the use of the DIANA interface will provide advantages in the development of the
concurrency prototype and the transition from prototype to working package, as well as
making QUEST compatible with the APSE standard.
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5. Development of a technology-transfer document.

In order to speed the transfer of technology from the research environment to a
working environment, a prototype development document will be created. The prototype

development document will be a concise overview and a detailed explanation of each

module of the prototype system. It will also contain descriptions of the directions which

might be taken to expand the prototyl?e modules into a more robust system. The purpose
of this document will be to allow any interested NASA subcontractor to quickly develop a

robust working automated testing environment from the prototype developed during this
research.

6. Continue contacts with NASA subcontractors currently developing Ada software.

The contacts established with Boeing in Phase 2 of this project provided useful insight

into the requirements NASA subcontractors have for an automated program testing tool.
Continued interaction with these contacts will aid in the development of a concurrency

testing prototype appropriate to existing concurrent Ada software. We also look to them

for direction in the development of the technology-transfer document.

6.3 PROPOSED RESEARCH SCHEDULE

The Gantt chart in Figure 6.3 provides the sequence of Task I activities to be

accomplished during Phase 3 of this project. Details for Phase 3 activities are presented
above.

Task

1

2

3

4

5

6

1990

Jun Jul Aug Sep Oct Nov Dec Jan

Figure 6.3.

1991

Feb Mar Apr May

Phase 3, Task I Gantt Chart
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AUTOMATED UNIT-LEVEL TESTING WITH HEURISTIC RULES

W. Homer Carlisle, Kai-Hsiung Chang,

James H. Cross, and William Keleher

ABSTRACT

Software testing plays a significant role in the development of complex software systems. Current
testing methods generally require significant effort to generate meaningful test cases. The QUEST/Ada 1

system is a prototype system designed using CLIPS [NASA87] to experiment with expert system based test

case generation. The prototype is designed to test for condition coverage, and attempts to generate test cases
to cover all feasible branches contained in an Ada program. This paper reports on heuristics used by the

system and the results of tests of the system using various rule sets. The rule sets used for these tests varied

according to the degree of knowledge of the boolean conditions in thc program.

INTRODUCTION

There are many approaches to software testing, and most require considerable human interaction at a

great cost in man hours. The goal of automating this activity is to provide for more cost effective software

testing and to avoid human bias or oversight. One class of automated testing tools, the dynamic analysis tools,

is characterized by direct execution of the program under test [DEM87]. A test data generator is a dynamic

analysis tool designed to assist the user in achieving goals such as statement coverage, condition coverage, or

path testing. The difficulties of test data generation are due to the computation efforts, sometimes wasted, in
computing infeasible paths or solving arbitrary path predicates, especially if a predicate contains fioh-linear

terms or function calls. Consequently AI approaches must be utilized to avoid these problems.

QUEST/Ada 1 is a prototype system that is designed to experiment with expert system based test case

generation. This system seeks to achieve its goals using heuristic rules to choose and generate new lest cases.

This paper reports on various rule sets designed to achieve condition coverage of Aria programs with

increasing amounts of knowledge about the conditions in the Ada program. Knowledge can vary from little

information about the input data (requiring random ease generation of the appropriate type of input data), to

complete symbolic solutions for variables in the conditions under test.

BACKGROUND

Testing

The reliability of software is critical to space applications. One of the most common ways of ensuring

software reliability is through program testing. There are three major categories of software testing: domain

testing, functional testing and structural testing.

Domain testing
Programs run on fini|e state machines over finite input sets. Consequently it is theoretically possible

to prove a program correct by testing it over its input domain. However in general these domains arc too large

for this type of testing to be feasible. It is therefore assumed that programs of arbitrary large storage

requirements run on machines of arbitrary large size and precision. Unfortunately this assumption leads to

results that demonstrate the impossibility of an algorithm to determine correctness of a program. [HOW87]

IResearch and development of the QUEST/Ada system has been supported by the National Aeronautics and

Space Administration (NASA). Ada is a trademark of the United Slates Governmcnt, Ada Joint Program
Office.
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Functional testing
Functional testing is the process of attempting to find discrepancies between the program's output and

its requirements specification. [MEY78]. In functional testing [BEI84, HOW86] a program is executed over

selected input and the results are compared with expected output. Normally nothing is assumed about the

internal structure of the program. Rather, test cases are constructed from "knowledge of "what the program is

supposed to do', i.e. its "function'. This is known as the "black box" approach to testing.

Structural testing

Structural or "white box" testing uses the source code control structure of a program to guide the

selection of test data [BEI84]. One metric for the selection process is coverage, which is concerned with the

number of structural units exercised by a test case. Examples of this metric arc

Statement Coverage - execute all statements in the

program graph;

Branch Covcrage- encounter all cxit branches for each

decision node in the program graph;

Path Coverage - traverse all paths of the graph.

Attempts to develop a practical test generation methodology for branch coverage have suggested

approaches ranging from random test generation to full program path predicate solutions. Howden [HOW87 l

has formalized test generation rules to help programmers test their code. Consequently such rules can be

considered "expert knowledge" required for effective and automatic test case generation in an expert system

lest case generator.

Test case generation

The success of test data generation depends on knowledge of the internal structure of the program.

Indeed, in the absence of any such knowledge, the only known testing method is random generation of test data

and probabilistic determination of the equivalence of the function under test with desired behavior. On the

other hand, if the structure of the program is well understood then by testing, complete validation over a

limited domain may be possible. Consider for example a program consisting of a single input variable

containing only assignment and increment operations. Such a restriction of a program determines that it can

only compute a constant function f(x) = e or a linear function f(x) = x + c for some constant value c. With this

knowledge two test cases are consequently sufficient to identify and validate the program.

Branch coverage is currently regarded as a minimal standard of achievement in structural testing

[PRA87]. Thus, the goal of an expert system test case generator is to achieve branch coverage by using

heuristic rules with execution feedback to generate test cases sufficient to insure that each branch in a program

is invoked at least once. Figure 1 gives a system overview of such a test case generation methodology.

Figurc 1

To avoid exponential searches, thc analysis may bc supported by a search strategy such as that

proposed by Prather and Myers [Prat87 I. This strategy views a software package as a flowgraph with each

condition containing a true and false branch. The goal for test cases is to maximize the number of covered

branches as recorded in a branch coverage table. The strategy is to select the first condition in a path from the

start for which the condition has not yet been tested in both directions, and to generate (if possible) a test case

that will drive this condition in the other direction. The idea behind this strategy is that, since some previous

lest case has reached the condition, it iS already "close" to a lest value required to drive an alternate branch of
the condition.



AN INTELLIGENT TEST DATA GENERATION SYSTEM

QUEST/Ada is a prototype automated software testing tool presently implemented to support expert

system based coverage analysis. The framework of QUEST/Ada will however support other rule based testing

methods. Figure 2 gives an overview of the relationships among the major components of the system. An
instrumented Ada module is supplied as input to a parser scanner that gathers information about the

conditions being tested. Using compiled output of the parser/scanner, the test coverage analyzer executes the

program for a test case and analyses the result. Based on this analysis, the test data generator uses rules to

create new values for variables that are global to or are parameters to the unit under test. These variables are

called "imput variables".

Figurc 2

Initial test cases are needed to start the process. These may be provided by the user or generated by

the system using an initial test case generation rule. Upon execution of the program on test cases, coverage

analysis determines what branches have been covered and which branches need further testing. Coverage

analysis is basically a table filling process recording the execution of each condition of the program. The

expert system generates new lest cases by applying rules based on knowledge about both the conditions not yet
fully covered, and previous conditions in the execution path that lead to the condition not fully covered. New

test cases are generated, and the testing continues. Execution stops when full coverage is indicated, or when a
test case limit is reached. Implementation details of the QUEST/Ada system are described in [BRO89].

Rule Based Test Case Generation

As designed, the QUEST/Ada system's performance is determined by the initial test case, rules

chosen to generate new lest cases, and the method used to select a best lesl case when there are several lest

cases that are known to drive a path to a specific condition.

Initial cases

If the user does not supply an initial test case, then initial test cases are generated by rules that requirc

knowledge of the type and range of the input variables. For these variables test cases are generated to

represent their mid-range, i.e. (upper-limit - lower-limit)/2, lower and upper values.

]_.esl lesl case selection

When there are several lest cases that drive a condition in a particular way, a rule is used to select

from among these test cases a best test case. Experiments are being conducted with two "best test case"

selection rules, with the second rule intended to be more knowledgeable than the first. In the first rule, the

best lest case represents a measure of the closeness of the left hand side (LHS) and the right hand side (RHS)

of the condition as determined by the formula

ABS(LHS - RHS)/2*MAX(ABS(LHS), ABS(RHS)).

The idea is that test values closer to the boundary of the condition are better. Problems arise in the search

algorithm's attempt to cover all branches when a change in values of input variables change an execution path,

and execution no longer reaches the condition. In order to decrease the likelihood of such unanticipated

branching, a second approach to best test case selection has been designed. This approach utilizes information

about the conditions in the execution path leading to the condition under consideration. In this situation, the

formula for best test case selection takes into account the closeness of previous conditions. The heuristic idea

is that for previous conditions in the execution path, the left hand side and right hand side of these conditions

should be further apart. This heuristic assumption is based on the idea that small changes in the values



affectingthe condition under consideration will have a smaller impact on previous conditions when the left

hand side and right hand side are far apart.

As an example, if two conditions cl,c2 precede condition c3 in the execution path, and tl,t2,t3

represent the "closeness" values associated with a test case t, then for weights wl,w2,w3 a value determined by

w3*t3 + w2*(I/t2) + wl*(l/tl)

represents a better measure of the test case than does the value t3. Note that the values of tl,t2,t3 are in [0,1].

_.,n

In general, ifc 1, e2 .... Cn. 1 represent a path of conditions leading to a condition c n, and for each i =

ti= ILHS ofc i - RHS of cil/2*max(lLHS of cil, I RHS ofci 1)

then for some weights Wl, ... Wn, the best test case for condition n is chosen by a minimum v_lluc of

v = Wn*t n + Wn.l/tn. 1 + ... + Wl/t I.

For testing in QUEST, weights of 1 for w n and l/(n-l) for Wl...Wn. 1 were chosen.

Test case generation

In order to experiment with the effects of altering the knowledge about the conditions of a program

under test, three categories of rules have been selected. The rules are in the syntax of "CLIPS" [NASA87 I, a

forward chaining expert system tool used by the QUESTtAda prototype. Comments (lines beginning with ;)

are intended to explain the action of the rule. The first category of rule reflects only "type" (integer, float, etc.)

knowledge about the variables contained in the conditions. These rules generate new test cases by randomly

generating values. The following listing provides an example of this type of rule.

Listing 1.

(defrule generate., random test cases '_

(types S?typeJist)

;use only type and

(lowbounds $?low_bound'_ list)

;boundary into

(high_bounds $?high_bounds_list)

;to avoid run error

;set up a loop to generate n test cases for the

;n input variables

(bind ?outer...pointer l)

(while (< = ?outer_pointer (length $Ttype list))

;get test case number

(bind ?test_number (test_number))

(format test-case-file" %d" ?test_number)

;step thru each variable

(bind ?inner_pointer 1)

(while (< = ?inner pointer (length $?type_list))

;get the type of the variable

(bind ?type (nth ?inner pointer $?type_list))

• ;assign it a random value

(bind ?random_value (randO))

;get range information
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(bind ?low_bound

(nth ?inner_pointer $?low_bounds_list))

(bind ?high bound

(nlh ?inner .poinler $?high_bounds_list))

;be sure random value is within bounds

(it" (> ?random_value ?high_bound) then

(bind ?test_value

(_ (/?high bound ?random.value) ?high bound))

else

(bind ?test..valuc ?random_value))

(if (< ?random value ?low bound) then

(bind 7test..value

(" (/?low bound ?random value) ?low_bound))

else

(bind ?test value ?random value))

;write value for the variable to the lest case file

;in appropriate format

(if (eq ?type int) then

(format test-case-file" 9'od" ?test_value))

(if (eq ?t_:te fixed) then

(format test-case-file" %f' ?test_value))

(if (eq ?type float) then

(format test-case-file" %e" ?test value))

;next variable in test case

(bind ?inner pointer (+ ?inner..pointer l)))

(fprintout test-case-file crl o

;next test case

(bind ?outer..pointer (+ ?outer..pointer l)))

)

The second category of rule attempts to incorporate information that is routinely obtained by a parse

of the expression that makes up a condition (such as "type" and "range'), information about coverage so far

obtained, and best test cases for previous tests. This particular example uses the best test case associated with

a condition, and for n input variables, generates n test eases by allering each variable one percent of ils range.

Listing #2 gives and example of this category of rule.

Listing 2.

(delrulegenerate increment by_one_/_ercent test cases-

(types $?type_list)

(low_bounds $?low bounds list)

(high_bounds $?high_bounds list)

;match any condition that is only half covered

(covcragc_lable ?decision ?condition true I false )

;get the best t_t _ foi" each condition

(best test case ?decision ?condition $_alues)

=>

(bind ?outer_pointer 1)

(while (< = 7outer__pointer (length $.?values))

(bind ?test_number (test_number))

(format test-case-file" %d" ?test_number)

(bind ?inner...l_inter 1)

(while (< = 7inner.pointer (length $?values))

(bind ?type (nth ?inner_.pointer $?type list))
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(bind?high_bound

(nth ?inner_pointer $?high_bounds_list))

(bind ?low_bound

(nth ?inner pointer $?[ow_bounds_list))

;incrcmcm the current variable by one percent of

;its range

(bind ?one_percent (/(- ?high_bound ?lowbound) 100))

(bind ?increment

(+ (nth ?inner..pointer $?vaiues)?one. percent))

;if this is the variable we want to alter

(if(= ?outer_pointer ?inner_pointer) then

(if(< = ?increment ?high_bound) thcn

(bind 7test_value ?incrcmem)

else

(bind 7test_value ?low_bound))

else

:and the other variables arc written as is

(bind ?test_value (nth 7inner_pointer $?valucs)))

(if(eq 7type int)thcn

(format test-case-file" %d" ?test_value))

(if (eq ?type fixed) then

(format test-case-file" %1" ?test_value))

(if(eq ?type float) thcn

(format test-case-file * %e" ?test_value))

(bind ?inner pointer (+ ?inner_.pointer 1)))

(fprintout test-case-file crlf)

(bind ?outer pointer (+ ?outer pointer l)))

)

The final type of rule utilizes information about the condition that can be obtained by symbolic

manipulation of the cxpression. Thc given rule uses a boundary point for input variables associated with the

true and false value of a condition. This value is determined by using symbolic manipulation of thc condition

under test. Many values can be chosen thai cross the boundary of the condition and, as with best [csi case

selection, we seek to choose a value that will not alter the execution path to the condition. In addition to best

test case selection we now have additional knowledge to generate new test cases, We use the values of

variables at a condition and compare them with values of the variables that reach the condition. This added

information is incorporated in the generation of new test cases. To achieve this, the following approach has
been taken by the above rule.

Suppose that for an input variable x appearing in a condition under test, the value ofx at the condition

boundary has been determined to be x b and the input value that has driven one direction of the condition has

been x i. Although we do not know howx is modified along the path leading to the condition (the value ofx on

input may be expected to differ from the value ofx at the condition) we are able to establish that the value ofx

at the condition is x c. In this situation we choose as new test cases (provided the values lie in the limits allowed

for values of x)

Xb*(Xi/Xc) + e

where e is 0 or lakes on a small positive or negative value. Listing 3 is an example of this heuristic.
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Listing 3.

(defrule generate_symbolicapproximation, plusincrement test cases"

t,,'pe information here

(types $?type_litt)

(Iowbounds $?low_bounds_list)

(high_bounds $?high bounds..list)

;knowledge about the condition here

(coverage table ?decision ?condition true[false)

(best lest case ?decision ?condition $?values)

(value_at_cond ?decision ?condition $.?vacs)

(symbolic boundary ?decision ?condition $?boundaries)

m>

(bind ?outer_pointer l)

(while (< = ?outer_pointer (length $?values))

(bind ?test_number (testnumber))

(format test-case-file" %d" ?test_number)

(bind ?inner_pointer l)

(while (< = ?inner_pointer (length $.?values))

(bind ?type (nth ?inner.lx_inter $?type_list))

;for the variable under consideration

(if (= ?outer pointer ?inner pointer) then

;for its range

(bind ?high bound

(nth ?inner_pointer $?high bounds list))

(bind ?lowbound

(nlh ?inner_pointer $?low bounds list))

;get its input value

(bind ? (nth ?inner_pointer $?values))

;and its value at condition

(bind ?Xc (nlh ?inner_pointer S?vac_))

;and the boundary of the condition

(bind ?Xb (nth ?inner.pointer $?boundaries))

;generate a guess as to an input value leading to boundary

(bind ?approximation (* (/?Xi ?Xc) Xb))

;generate a small amount to move around boundary

(if(< (al_ ?high bound) tabs ?low bound)) then

(bind ?small_bound ?high_bound)

else

(bind ?small_bound ?low_bound))

(bind ?digit O)

(while (! = (trunc ?low bound) ?low bound)

(bind ?digit (+ ?digit 1))

(bind ?low_bound (* ?low_bound ('" 10 ?digit))))

;call it e

(bind ?e (*" 10 (' -1 ?digit)))

(bind ?incremented_approximation

;increment the approximation by e

(+ ?approximation ?e))

(if (< = ?incremented approximation ?highIlXmnd) then

(bind ?test_value ?incremented_approximation)

else

(bind 7test_value ?high_N3und))



else

(bind ?test value (nth ?inner...pointer$?values)))

;writeto tes(c3_ fileinappropriate format

(if(eq 7type int)then

(format test-case-file"%d" ?test_value))

(if (eq ?tyl_ fixed) then

(format test-case-file" %f" ?test value))

(if (eq 7type float) then

(format test-case-file" %e" 7test_value))

(bind ?inner_pointer (+ ?inner pointer 1)))

(fprintout lest-case-file crl 0

;next test case

(bind ?outer_pointer (+ ?outer .pointer X)))

)

CONCLUSION

The objective of the research has bccn to achieve more effective test data gcncnttion by combining

software coverage analysis techniques and artificial intelligence knowledge based approaches. The research

has concentrated on condition coverage and uses a prototype system built for expert system based coverage

analysis. The success of this approach depends on the search algorithm used to achieve coverage and the

heuristic rules employed by the search. The effectiveness of rules vary according to the knowledge about the

source and the: knowledge obtained by previous test cases. The QUEST/Aria prototype provides an extendible

framework which supports experimentation with ruic based approaches to test data generation. In particular it

facilitates the comparison of these rule based approaches to more traditional techniques for ensuring s0ft_vare

test adequacy criteria such as branch coverage:, and allows for modification and experiments with heuristics to

achieve this goal.
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APPENDIX B. EXAMPLE OF INSTRUMENTED PROGRAMS



FTRIANGLE I

with text io,instrumentation;

use text_l%;

procedure driver_ftriangle is
TestNum: integer;
indata, outdata: file type;
side 1,side2,side3 :FLOAT;
rval: integer;

procedure print..parms(intermediate: in file type);
package inst is new instrumentation(print_p'arms);
use inst;

package instl is new inst.float_inst(float);
use instl;
package inst2 is new inst.integer_inst(integer);
use inst2;

package int_io is new text_io.integer_io(integer);
use int io;
package float_io is new text_io.float_io(float);
use float_io;

ro.cedure print_parms(intermediate: in file_type) is
egm

put(intermediate, sidel);
put(intermediate, side2);
put(intermediate, side3);

end print__parms;

function TRIANGLE( SIDE1,SIDE2,SIDE3:in FLOAT ) return INTEGER is

-- returns 0 - not a triangle or SIDE3 not hypotenuse
-- 1 - small acute
- 2 - small acute & isosceles

-- 3 - small right
-- 4 - small obtuse
-- 5 - small obtuse & isosceles
-- 6 - medium acute
-- 7 - medium acute & isosceles

-- 8 - medium right
-- 9 - medium obtuse
-- 10 - medium obtuse & isosceles

-- 11 - large acute
-- 12 - large acute & isosceles
-- 13 - large right
-- 14 - large obtuse
- 15 - large obtuse & isosceles



V

RETURN VAL: INTEGER;

begin
if decision(TestNum, 1,

relop(TestNum, l,1,
ABS(SIDE3* SIDE3-SIDEI*SIDE1 + SIDE2*SIDE2),

LT,0.1))
then RETURN VAL := 3;

elsif decision(Testl_um,2,
relop(TestNum,2,1,

SIDE 1*SIDE 1+ SIDE2* SIDE2,

LT, SIDE3*SIDE3))
then

if decision(TestNum,3,
relop(TestNum,3,1,

SIDE1 + SIDE2,

LT, SIDE3))
then RETURN VAL := 0;

elsif decision(Tesfiqum,4,
relop(TestNum,4,1,

ABS(SIDE1-SIDE2),
LT,0.1))

then RETURN VAL := 5;
else RETURN V._ :-- 4;

E

end if;
elsif decision(TestNum,5,

relop(TestNum,5,1,
SIDE1,
GT, SIDE3) or relop(TestNum,5,2,
SIDE2,
GT, SIDE3))

then RETURN VAL :-- 0;

elsif decision(TestNum,6,
relop(TestNum,6,1,ABS(SIDE 1-SIDE2),LT,0.1 ))

then RETURN VAL := 2;
else

RETURN VAL := 1;

end if;

if decision(TestNum,7,
relop(TestNum,7,1,RETURN_VALEQ,0)) then

return(0);
elsif decision(TestNum,8,relop(TestNum,8,1,SIDE1,GT,10.0)

and
relop(TestNum,8,2,SIDE2,GT,10.0)) then RETURN_VAL :=

RETURN VAL + 10;
elsif d'_cision(TestNum,9,relop(TestNum,9,1,SIDE1,GT, 1.0)

and
relop(TestNum,9,2,SIDE2,GT,1.0)) then RETURN_VAL :=

RETURN VAL + 5;

2



end if;

return(RETURN_VAL);
end;

M_

begin
open(indata, in file,"test.data");

• • II • • 1 _| •create(intermediate,out file, mtermedlate.resu ts ),
create(outdata, out_file,%utput.data");

while not End OF file(indata) loop
get(indata, Testgum); --TestNum,parml,parm2,...

get(indata, side 1);
get(indata, side2);
get(indata, side3);

rval •-- triangle(side 1,side2,side3);

put(outdata, TestNum);
put(outdata, rval);
new line(outdata);

end loop;

--TestNum,modifiable 1,modifiable2,...

close(indata);
close(intermediate);
close(outdata);

end;

3
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ITRIANGLE I

with text io, instrumentation;

use text_To;

procedure driver_itriangle is
TestNum: integer;
indata,

outdata: file_type;

side 1,side2,side3,rval: integer;

procedure print_.parms(intermediate: in file type);
package inst is new instrumentation(print_Parms);
package instl is new inst.integer inst(integer);
use inst,instl;
package int io is new text io.integer io(integer);
use intio; - - -

procedure print_parms(intermediate: in file_type) is
begin

put(intermediate, side1);
put(intermediate, side2);
put(intermediate, side3);

end print_parms;

function ITRIANGLE( sidel,side2,side3:in INTEGER ) return INTEGER is

return val: INTEGER;
m

-- returns 0 - not a triangle or side3 not hypotenuse
-- 1 - small acute
-- 2 - small acute & isosceles

-- 3 - small right
-- 4 - small obtuse
-- 5 - small obtuse & isosceles
-- 6 - medium acute
-- 7 - medium acute & isosceles

-- 8 - medium right
-- 9 - medium obtuse
-- 10 - medium obtuse & isosceles

-- 11 - large acute
-- 12 - large acute & isosceles
-- 13 - large right
-- 14 - large obtuse
-- 15 - large obtuse & isosceles

begin

4



if decision(TestNum,1,
relop(TestNum,1,1,side3*side3,EQ,side1*side1+

side2*side2)) then
return val :ffi 3;

elsif dec_ion(TestNum,2,
relop(TestNum,2,1,side 1*side 1 + side2* side2,LT,

side3*side3)) then
if decision(TestNum,3,relop(TestNum,3,1,sidel + side2,LT, side3)) then

return val := 0;
elsif dec_ion(TestNum,4,relop(TestNum,4,1,side 1,EQ,side2))

then

return val := 5;
n

else
return val := 4;

en_ if;
elsif decision(TestNum,5,relop(TestNum,5,1,side 1,GT, side3)

or relop(TestNum,5,2,side2,GT, side3)) then
return val := 0;

elsif de_ion(TestNum,6,relop(TestNum,6,1,side 1,EQ,side2))
return val := 2;

else
return val := 1;

end if;

if decision(TestNum,7,relop(TestNum,7,1,returnval,EQ,0))
return(0);

elsif decision(TestNum,8,relop(TestNum,8,1,side 1,GT, 10)
and relop(TestNum,8,2,side2,GT,10)) then

return val :ffi return val + 10;
elsif decisiffn(TestNum,9,Telop(TestNum,9,1,side 1,GT, 1) and

relop(TestNum,9,2,side2,GT, 1)) then
return val := return val + 5;

end if;

return(returnval);

end;

then

then

begin
open(indata, in file,"test.data");
create(intermediate,out file,"intermediate.results");
create(outdata, out_file,'_utput.data");

while not End OF file(indata) loop
get(indata,Testl_um); --TestNum, parml,parm2,...
get(indata, sidel);
get(indata, side2);
get(indata, side3);

5



rval := itriangle(sidel,side2,side3);

put(outdata, TestNum);
put(outdata, rval);
new_line(outdata);

end loop;

--TestNum, modifiable 1,modifiable2,...

close(indata);
close(intermediate);
close(outdata);

end;

6
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v

with text io, instrumentation;
T

use text_lO;

procedure driver max3 is
TestNum: - integer;
indata,
outdata: file_type;
i,j,k, rval: integer;

procedure print parms(intermediate: in file type);
package inst is _-ew instrumentation(print_parms);
package instl is new inst.integer_inst(integer);
use inst,instl;
package int io is new text_io.integer_io(integer);
use int_io; -

procedure print_parms(intermediate: in file_type) is
begin

put(intermediate, i);
put(intermediate, j);
put(intermediate, k);

end print_parms;

function MAX3(I, J, K: in INTEGER) return INTEGER is
L: INTEGER;

begin
-- compute the maximum of I and J
if decision(TestNum, 1,relop(TestNum, 1,1,I,GT,J)) then

L:- I;
else

L:= J;
end if;

-- compute the maximum of I, J, and L
if decision(TestNum,2,relop(TestNum,2,1,L, LT,K)) then

L:= K;
end if;

return(L);
end;

begin
open(indata, in file,"test.data");
create(intermediate,out file,"intermediate.results");
create(outdata,out_file,'_utput.data");



while not End OF file(indata) loop
get(indata,Testl_um); --TestNum,parml,parm2,...
get(indata,i);
get(indata,i),
get(indata,K);

rval "= max3(ij,k);

put(outdata,TestNum);
put(outdata, rval);
new line(outdata);

end loop;

-TestNum, modifiable 1,modifiable2,...

close(indata);
close(intermediate);
close(outdata);

end;

=._
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TEST1 I

L

with text io, instrumentation;

use text_To;

procedure driver test1 is
TestNum: -integer;
indata,
outdata: file_type;

i,j,k: integer;

procedure pr!nt_parms(intermediate: in file type);
package rest is new instrumentation(print_parms);
use inst;
package instl is new inst.integerinst(integer);
use inst 1;

package, int_io is new text_io.integer_io(integer);
use intjo;

procedure print_parms(intermediate: in file_type) is
begin

put(intermediate, i);
put(intermediate, j);
put(intermediate, k);

end print_parms;

procedure testl(i: in out integer;
j: in out integer;
k: in out integer) is

begin
while decision(TestNum,1,

relop(TestNum, 1,1,i,GT,j)) loop
i:- i-1;

k :- (k + 314) rood 25;

null;

--dl

if decision(TestNum,2,
relop(TestNum,2,1,i,GT, k)) then --d2

while decision(TestNum,3,
relop(TestNum,3,1,i,GT, k)) loop --d3

k:=k+ 1;

if decision(TestNum,4,
relop(TestNum,4,1,k,GE,27)) then

else

null;
end if;

end loop;
else

if decision(TestNum,5,

9

--d4



relop(TestNum,5,1,i,LT, k-3))
if decision(TestNum,6,

then --d5

relop(TestNum,6,1,i- 10,LT,j))
then --d6

null;
else

null;
end if;

else
while decision(TestNum,7,

relop(TestNum,7,1,i,GE,k-3))
loop --d7

i:=i-1;
end loop;

end if;
end if;

end loop;
if decision(TestNum,8,relop(TestNum,8,1,i,EQ,j)) then

null;
else

null;
end if;

end testl;

--d8

begin
open(indata, in file,"test.data");
create(intermediate,out file,"intermediate.results");
create(outdata, out_file,%utput.data");

while not End OF file(indata) loop
get(indata,'restbTum); --TestNum,parm 1,parm2,...
get(indata, i);
get(indata,j);
get(indata, k);

testl(ij,k);

put(outdata, TestNum);
put(outdata, i);
put(outdata,j);
put(outdata, k);
newline(outdata);

end loop;

--TestNum,modifiable 1,modifiable2,...

close(indata);
close(intermediate);
close(outdata);

end;
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TEST2 I

m

with text io, instrumentation;

use text__o;

procedure driver test2 is
TestNum: -integer;
indata,
outdata: file_type;
a,b: integer;

procedure print_parms(intermediate, in file_type);
package inst is new instrumentation(print_.parms);
use inst;
package instl is new inst.integerinst(integer);
use instl;
package int_io is new text_io.integer_io(integer);
use int_io;

procedure print_parms(intermediate: in file_type) is
begin

put(intermediate, a);
put(intermediate, b);

end print_parms;

procedure test2(a: in out integer; b: in out integer) is
c,d: integer;
begin

d:= 2;
while decision(TestNum, l,relop(TestNum, l,l,a, LT,1)) loop

if decision(TestNum,2,relop(TestNum,2,1,a, GT, b)) then
c := 713 rood a;
while decision(TestNum,3,

relop(TestNum,3,1,c,GT, a)) loop
c:= c-2;
d:-d-1;
if decision(TestNum,4,

relop(TestNum,4,1,c, GT, d)) then
d :- d-2;

else

null;
end if;
if decision(TestNum,5,

relop(TestNum,5,1,c,LT,b)) then
if decision(TestNum,6,

relop(TestNum,6,1,c,LT,213 mod b)) then
if decision(TestNum,7,

relop(TestNum,7,1,b,GT, d)) then
null;

11
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else

if decision(TestNum,8,
relop(TestNum,8,1,b,EQ,d)) then

b :-- b+l;
else

null;
end if;

end if;
else

c := 213 rood b;

end if;
else

null;
end if;

end loop;
else

if decision(TestNum,9,relop(TestNum,9,1,a,EQ,b)) then
a :- b-5;
while decision(TestNum, 10,

reiop(TestNum, 10,1,a, GT, b)) loop
a := a-l;
b := (b*b*a*a) rood 13;

end loop;
else

if decision(TestNum,11,
relop(TestNum, 11,1,a, LT,b)) then

a :-- a+ 1;
else

null;
end if;

end if;
end if;

end loop;
end test2;

begin
open(indata, in file,"test.data");
create(interme'aiate,out file,"intermediate.results");
create(outdata, out_file,'_utput.data");

while not End OF file(indata) loop
get(indata,Testl_um);
get(indata, a);
get(indata,b);

test2(a,b);

put(outdata,TestNum);
put(outdata, a);
put(outdata,b);

12



new line(outdata);
end loop;

close(indata);
close(intermediate);
close(outdata);

end;
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TEST3 I

w

with text io, instrumentation;

use textjo;

procedure driver test3 is
TestNum: Tnteger;
indata,
outdata: file_type;
i,j: integer;

procedure print_.parms(intermediate: in file type);
package inst is new instrumentation(print__parms);
use inst;
package instl is new inst.integer_inst(integer);
use instl;
package int_io is new text_io.integer_io(integer);
use int io;

procedure print..parms(intermediate: in file_type) is
begin

put(intermediate, i);
put(intermediate, j);

end print_parms;

procedure test3(i,j:in out integer) is
k: integer;
begin

k:= 0;
while decision(TestNum, l,relop(TestNum, l,l,j,LT,50)) loop

if decision(TestNum,2,relop(TestNum,2,1,i,EQ,j)) then
i := i+l;
j:--j-l;
k:-- j+l;

else

j :-- j+l;
k:- i;

end if;
end loop;

while decision(TestNum,3,relop(TestNum,3,1,i,LE,k-3)) loop
i := i+3;

end loop;

if decision(TestNum,4,relop(TestNum,4,1,i,EQ,j)) then
null;

else

if decision(TestNum,5,relop(TestNum,5,1,i,EQ,k)) then
null;
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end if;

end if;
end test3;

begin

open(indata, in file,"test.datail);
¢reate(interme'_iate,out file, intermediate.results");
¢reate(outdata, out_file,%utput.data");

while not End OF file(indata) loop
get(indata, Testl',Tum);
get(indata, i);
get(indata,j);

test3(i,j);

put(outdata,TestNum);
put(outdata, i);
put(outdata,j);
new_line(outdata);

end loop;

close(indata);
close(intermediate);
close(outdata);

end;

w
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LINEAR I

with text io, instrumentation;
'T"

use text_m;

procedure driver_linear is
TestNum: integer;

indata, outdata: file_type;
y,z, rval: integer;
x: float;

procedure printAaarms(intermediate: in file type);
package inst is ne--w instrumentation(print_parms);
use inst;
package instl is new inst.integerinst(integer);
use inst 1;
package inst2 is new inst.float_inst(float);
use inst2;
package int io is new text_io.integer_io(integer);
use int io;

package float_io is new text_io.float_io(float);
use floatio;

procedure print_parms(intermediate: in file_type) is
begin

put(intermediate, x);
put(intermediate, y);
put(intermediate, z);

end print._parms;

function LINEAR( X:in FLOAT;Y,Z: in INTEGER ) return INTEGER
is

begin
if decision(TestNum, 1,relop(TestNum, 1,1,X,GT, 10.5)) then

if decision(TestNum,2,relop(TestNum,2,1,Y,EQ,2) and
relop(TestNum,2,2,Z,EQ,52)) then

if decision(TestNum,3,
relop(TestNum,3,1,X, GT, FLOAT(2*Y + 15))) then

return(l);
elsif decision(TestNum,4,

relop(TestNum,4,1,X, GT, FLOAT(-2*Y + 15))) then
return(2);

end if;
elsif decision(TestNum,5,relop(TestNum,5,1,Y, GT,2) and

relop(TestNum,5,2,Z,GT,52)) then
if decision(TestNum,6,

relop(TestNum,6,1,X,GT,19.2)) then
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return(3);
else

return(4);
end if;

end if;
elsif decision(TestNum,7,relop(TestNum,7,1,X,LT,10.0) and

relop(TestNurn,7,2,Y,GT,10*Z)) then if
decision(TestNum,8,relop(TestNum,8,1,Y,EQ,100)) then

else
return(6);

end if;
else

return(7);
end if;

end;

return(5);

begin
open(indata,in file,"test.datail);• tt

create(intermediate, out file, intermediate.results );
create(outdata, out_file,'_utput.data");

while not End OF file(indata) loop
get(indata, Testlq'um); --TestNum,parm 1,parm2,...
get(indata,x);
get(indata, y);
get(indata, z);

rval :--- linear(x,y,z);

put(outdata, TestNum);
put(outdata, rval);
new line(outdata);

end loop;

--TestNum,modifiable 1,modifiable2,...

close(indata);
close(intermediate);
close(outdata);

end;
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The librarian routines can be divided into three main parts: archive association,

archive data set manipulation, and QUEST/Ada specific routines.

The archive association routines are:

lib init0
lib-end0
lib-set0
lib-directory 0

lib-remove0

The data set manipulation routines are:
lib open()
lib-close0
lib-read0
lib-write0
lib-update0
lib-set key()
lib-key'_pattern0

The QUEST/Ada specific routines are:
lib quest setup()
lib-quest-connectO
lib-quest-shutdown 0

lib-archiv-e_resultsO

The QUEST/Ada routines are all that need to be called by other components of
the QUEST/Ada system (such as the test generation module). Each of the above
routines will be documented below in terms of function, arguments and return values.

int lib_init( lib database)
db d'_finition *lib_database;

Description:
The function lib init initializes the librarian's data structures. No archive is

associated with the inid"alization. Function lib init needs only to be called once during a

program's execution and must be called before'any other librarian routine.

Argument:
lib database is a pointer to a database definition type. This is for future

expansion_ Currently, passing NULL is sufficient for setting up the librarian for
QUEST/Ada data set manipulation.

Return Value:
Librarian result code.

int lib_end( lib database)
db d_finition *lib_database;
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Description:
The function lib end allows the librarian to clean up before termination. The

librarian will have to bE initialized again before it can be used after a call to lib_end.

Argument:
lib database is a pointer to a database definition type. This is for future

expansion"(allowing multiple databases to be active). Passing NULL is sufficient for the
QUEST/Ada implementation.

Return Value:
Librarian result code.

L-

int lib_set( arch_name, options)
char *arch name;
unsigned option's;

Description:
The function lib set associates the librarian with a specific archive. If the

appropriate option is sift, the archive will be created if it does not exist. An archive must
be accessed via lib set before any of its data sets can be manipulated.

Arguments:
arch name is a character string representing the name of the archive system. This

is not a file"name, and it should not include any directory information (see lib_directory).

options is an unsigned integer consisting of a number of flags set to represent
options m handling the archive (defined in file librarian.h):

LIB CREATE - Create if not present.
LIB-READ - Reads are allowed.
LIB-WRITE - Writes are allowed.

LIB-UPDATE - Updates are allowed.
LIB-DELETE - Deletes are allowed.

LIB-GEN ACCESS - All above options turned on.

Note that in most cases an archive will be opened with option set to LIB_GEN_ACCESS
so that all actions are valid.

Return Value:
Librarian result code.

int lib_directory(directory)
char *directory;

Description:
The function lib_directory allows the librarian to associate the librarian with a

given directory path name. The directory path name should not contain any file name

specifications.

Argument:
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directory is a character string containing an accessible directory path name.

Return Value:
Librarian result code.

int libremove( arch_name, options)
char *arch name;

unsigned option's;

Description:
The function lib remove deletes all data sets of an archive. The functions

lib directory and lib se_ must usually be called before lib remove can find the data set
fil_. -

Arguments:
arch name is the name of the archive system to be removed. It does not contain

any directoFy information.
options is a field for future expansion. Currently, passing NULL will be sufficient

for a successful call.

Return Value:
Librarian result code.

w

int libopen( data set, options)
unsigne_l data set;
unsigned optio-ns;

Description:
The function lib open attempts to open a data set in an active archive. A data

set must be open befor_ being manipulated. Note that if the data set is already opened,

it will not be reopened; rather, a count for the data set will be incremented. The data
set will not be closed until this count has reached zero. All index files and the data file

are opened for the data set.

Arguments:
data set is an unsigned number representing a data set. Data sets start at zero

and increment upwards without any gaps. There is a maximum number of data sets that
an archive can have.

options is an unsigned number representing the operations that are valid for this
data set open. It is currently not used and passing NULL will be sufficient.

Return Value:
Librarian result code.

int lib close( data set)

- unsignea data_set;
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Description:
The function lib close decrements the open count for a data set (if it is opened in

the first place). If the _ount reaches zero, then all the index files and the data file are
closed.

Argument:
data set is the number for the data set that is to be closed.

start at zerff and increment upwards.

Note that data sets

Return Value:
Librarian result code.

int libread( data set, record, method)
unsigne_ data set;
void *reco'rd;
unsigned method;

Description:
The function lib read attempts to locate and read a record existing within an

open data set into a giv-en buffer. The record can be located in a variety of ways
(governed by the method argument). Note that if this read operation is searching based
on keys, then this key should be established by a lib_set_key call before the lib read call.

For sequential reading, the methods LIB FIRST_REC and LIB NEXT&-REC
should be used. For keyed reading, the metho_ LIB FIRST MATCt-r and
LIB NEXT MATCH are available. Note that LIB N"EXT _YtATCH is a valid method

only-if the d_ta set allows for duplicate keys. - -

Arguments:
data set is the number of an opened data set for the active archive.
reco7d is the buffer into which the record will be read into (if found).
method is the search method for finding the record:

LIB FIRST REC - First record in the data set.
LIB-NEXTREC - Next record to be read in.

LIB-FIRST-MATCH - First keyed match.
LIB-NEXT_-'MATCH - Next keyed match.

Return Value:

Librarian result code (note LIBEOF and LIB_NO_MATCH are not errors).

int lib_write( data set, record)
unsigne_ data set;
void *recffrd;

Description:
The function lib write saves the contents of an open data set's record into the

archive. The index files are updated to note the location of the new record in the data
file. It is very important that all keys associated with the data set record are established
(via lib_set_key) before the call to lib_write, since all index files will be updated.
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Arguments:
data set in the unsigned number representing which data set is to be updated.
reco7d is a pointer to the buffer to be written out. The librarian already knows

how many bytes to write out (because of the lib_set call) and the contents of the keys
(because of preceding calls to lib set key).

Return Value:

Librarian result code (note that lib_write could fail if a duplicate key exists for a
key notated to being unique).

int libupdate( data_set, record)
unsigned data set;
void *recffrd;

Description:
The function lib update replaces the data file's contents for the given record.

Note that lib update d_es not update the keyed structure for the record, only the data
file contents.- If the keys need to be changed, lib delete should be called for the record
followed by a lib_write for the new keyed conteni's.

Arguments:
data set is an unsigned number reflecting which data set's last record read is to

be modifieff.

record is a pointer to the new data contents of the record being updated.

Return Value:
Librarian result code.

int lib set key( data set, key_number, vargs)
- %nsigned - data set;

unsigned key_number;
va list *vargs;

Description:
The function lib set key is used to establish the contents of a key associated with

a data set's record. It _ausi-be called before any keyed read and before any write. For

reading, only the key that is being used to access the data set needs to be established
(the last established key will, in fact, be used as the index into the data file). For
writing, all keys for a record must be set before the record is written out.

Arguments:
data_set is an unsigned number representing which data set's record is having its

key set.
key number is an unsigned number (starting at zero) representing which key is

being set _r the record.
vargs is the actual components of the key. A key can have a number of

components, the combination of which are represented by an ASCII null terminated
string. A format string for the key (which is identical to a standard printf style format
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string) is establishedby the archive's lib_key3attern, calls. The vargspassedto
lib set key are expectedto follow the format string. The vargs argument is actually
passedto a vsprintf call.

Return Value:
LIB NO ERROR.

int lib_key_pattern( data set, key_number, key_pattern)
unsigned d"ata set;
unsigned key number;,
char *ke__pattern;

Description:
The function lib key_pattern should be called after an archive is connected to. It

has to be called before-anykeyed operations can proceed, lib key_pattern establishes a

printf style format strin_ for the keys of.each data set. All key_ foFa data set are stored
m the data set s index files in ASCII string format.

Arguments:

data set is a number indicating which archive data set this key pattern is being set
for.

key number is the key for the record whose pattern is be established.
key.-.patter is a printf style format string that will later be used in calls to

lib set key. For instance, if the key pattern is "%d/%d", then it is expected that the key
wilt be-set with two integers.

Return Value:
LIB NO ERROR.

w

int lib_quest setup( *dir, *name)
char *dir;,
char *name;

Description:

The function lib quest setup is a general purpose routine to connect the program
to a QUEST/Ada style-archi,Te. Ifa matching archive already exists (same name and in
the same directory), it is DELETED. Thus, lib quest setup should be used when
desiring to output to a new archive and not wh6"n adding to an existing one, since the
previous version will be deleted. All setup functions are handled and the program can
continue with lib_opens and lib_closes.

Arguments:
dir is a character string representing the directory the archive is to be stored

under.

name is the system name for the archive. Note that this is not a file name and
should not contain any directory information.

Return Value:
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Librarian result code.

w

int lib_quest connect( *dir, *name)
char *dir;
char *name;

Description:
The function lib quest connect is used to "connect" to an existing archive. Thus,

the program is more th_n likely intending to report on the contents of an existing archive
or add to the archive. Function lib_quest_connect handles are setup functions for a
QUEST/Ada archive.

Arguments:
dir is a character string representing the directory in which the archive will reside.
name is the system name for the archive. Note that this is not a file name and

should not contain any directory information.

Return Value:
Librarian result code.

w
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int lib_quest_shutdownO

Description:
This function shuts down an active QUEST/Ada style archive.

Arguments:
None.

Return Value:
Librarian result code.

int lib_archive_results( generation, list, intermediate name,
testdat name, testres_name)

int generation;

struct Irrecord_type *list;
char *intermediate_name;
char *testdat name;
char *testres_name;

Description:
The function lib archive results is a general purpose routine that collects all

information generated irrom one QUEST/Ada packet loop and stores into the current
archive.

Arguments:
generation is the packet number for the test data.
list is the head node pointer to the coverage table linked list. Pass NULL if this

information should not be archived.
intermediate name is the full path name of the intermediate data file. Pass

NULL if this inforrffation is not intended to be archived.

testdat name is the full path name of the test data file. Pass NULL if this
information is-'not to be archived.

testres name is the full path name of the test results file. Pass NULL if this file
is not be arch'ived.
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1. INTRODUCTION

The main thrust of software testing research has focused on the development of formal

methods of software and system testing [BEI83]. By def'mition, "testing .. is the process of

executing a program (or a part of a program) with the intention or goal of finding errors"

[SHO83]. A test case is a formally produced collection of prepared inputs, predicted outputs, and

observed results of one execution of a program [BEI83]. Program testing methods can be

classified as either dynamic analysis, static analysis, or a combination of these [RAM75].

Dynamic analysis of a program involves executing the program with test cases and analyzing the

output for correctness, while static analysis includes such techniques as program graph analysis

and symbolic evaluation. A dynamic test strategy is a method of choosing test case from the

functional domain of a program. It is based on criteria that may reflect the functional description

of a program, the program's internal structure, or a combination of both [ADR82]. These criteria

specify the method of test case generation to be used for a dynamic test strategy.

Generating test inputs to a program may not appear to be a difficult problem since it may

be done by a random number generator [DURS1]. However, random testing alone has been

shown to be an inadequate method for exposing errors. When combined with extremal and

special value (ESV) testing, it can be an effective method and can provide a direction for the

generation of future test cases [VOU86]. On the other hand, algorithms for generating test case

to satisfy particular adequacy criteria have generally poor time and space complexities and

produce small amount of test cases.

The objective of this research is to design and develop a framework that will automatically

generate test cases to achieve maximal branch coverage of an arbitrary program. A rule-based
x._



approach allows this framework to be extended to include more testing requirements and test case

generation knowledge. Detailed report on this research can be found in [BRO90].

2. FRAMEWORK

The outline of the framework is shown in Figure 1. It is divided into four major

components: parser/scanner, test case generator, test case analyzer, and report generator.

2.1 PARSER/SCANNER

The purpose of the parser/scanner is to instrument the source code and create a f'de

containing information about the source code's structure. The instrumentation of the code is done

by inserting a function call into the condition part of an IF-THEN statement. For example,

statement IF (8*Y-4*X+5) >= (5-Z) THEN do-I ELSE do-2 will be instrumented as IF

analyze((8*Y-4*X+5) >= (5-Z)) THEN do-I ELSE do-2. "Analyze" is a function defined in the

test case analyzer which performs coverage analysis and test case evaluation (see the section of

test case analyzer). The structure ftle provides the test case generator information about the code

so that test cases can be generated accordingly. The main concern of the code structure is the

IF-THEN statement. An IF-THEN statement is recognized as IF LHS <op> RHS THEN do-1

ELSE do-2, where RHS and LHS stand for right-hand-side and left-hand-side of the condition

expression, respectively. "<op>" denotes a logical operator such as <, >, =, =<, >=, or <>.

2.2 TEST CASE GENERATOR

The test case generator produces new test cases that would drive (or cover) target

branches/conditions in the code. It takes coverage results from the analyzer and code information

from the structure file and determines what conditions/branches should be targeted for new case

generation. It then uses heuristic rules to generate more test cases. When a set of new cases is
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generated,it is storedin a test case f'de.

2.3 TEST CASE ANALYZER

The test case analyzer runs the new test cases in the instrumented code, records

cumulative branch and condition coverage, and evaluates the "goodness" of each test case.

analysis result is then fed back to the test case generator for further case generation.

2.4

the

The

REPORT GENERATOR

When the test case generation and analysis cycle is completed, the report generator will print

the results for the user. The information to be printed in the report can be specified by the user.

These include test cases, condition and branch coverage, and statistics of the cases and coverage.

3. TEST CASE GENERATION STRATEGY

The objective of this framework is to achieve maximal branch coverage. In order to ensure

fruitful test case generation, a branch.coverage analysis is needed. The coverage analysis follows

the Path Prefix Strategy of Prather and Myers [PRA87]. In this strategy, the target Source code

is represented as a simplified flow chart. The branch coverage status of the code is recorded in

a coverage table. When a branch is driven (or covered) by any test case, the corresponding entry

in the table is marked with an "X". The goal of the test case generation is to mark all entries

in the table.

Consider Figures 2a and 2b. Currently, conditions 1 and 2 are fully covered; conditions

3, 4, and 5 are partially covered; and condition 6 is not covered. Since conditions 1 and 2 are

fully covered, there is no need to generate more cases for them. Condition 3, on the other hand,

is partially covered. More cases should be generated to drive its false branch, i.e., 3F, which is

not yet covered. The Path PrefLx Strategy states that new cases can be generated by modifying
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a test case, say case-3T, that drives branch 3T. Consider the fact that case-3T starts at the entry

point and reaches condition 3. A/though it drives 3T, it is "close" to driving 3F. Slight

modification of case-3T may devise some new cases that will drive 3F.

With this strategy in mind, the test case generator should target partially covered conditions.

Earlier test cases can be used as models for new cases. Conditions that have not been reached

yet, e.g., condition 6 in Figure 2b, will not be targeted for new case generation. This is because

no test case model yet exists that can be used for modification. A test case model will eventually

surface later in the process, and in this example, after condition 5 is fully covered, a model for

condition 6 will appear.

3.1 BEST TEST CASE

Problems arise when there is more than one test case driving the same path. For example,

if_:ases 1, 2, ..., n all drive branch 3T of Figure 2b, then the selection of a model case for branch

3F becomes problematic. It is necessary to quantify the "goodness" of each case and use the

"best" case as the model for modification.

Consider the typical format of an IF-THEN statement: IF exp THEN do-I ELSE do-2.

The evaluated Boolean value of exp determines the branching. Exp can be expressed in the form

of: LHS <op> RHS. The goodness of a test case, t 1, relative to a given condition can be defined

as

I LHS (tl) - RHS (tl) I / ( 2 * MAX ( I LHS (tl) I, I RHS (tl) I )) (1)

LHS(tl) and RHS (tl) represent the evaluated value of LHS and RHS, respectively, when

tl is used as the input data. This measure tells the closeness between LHS and RHS [DEA91].

When this measure is small, it is generally true that a slight modification of tl may change the
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truth value of exp, thus coveringthe other branch. The importance of slight modification to a

model test case is based on the fact that the model case starts from the entry point and reaches

the condition under consideration. Between the entry point and the condition, the modified cases

must pass through exactly the same branching conditions and yield the same results. For this

reason, the smaller the modification is, the better the chance will be for a modified case to stay

on the same path. The measurement of (1) provides this "goodness" of a test case which ranges

from 0 to 1. A test case that yields the smallest measurement is considered to be the best test

case of the condition under consideration.

The closeness measurement has a serious risk. Recall that a set of new test cases is

generated based on the best test case of a partially covered condition (called target condition),

and the intent of the new test cases is to cover the uncovered branch of the target condition. This

closeness i§ computed based on the target condition only. A slight modification to the target

condition may not have the same meaning to those conditions on the path. This may result in

what we will call unanticipated branchings along the path, that is, a flow of control that may no

longer drive the target condition. In order to reduce the likelihood of unanticipated branching,

a test case's goodness measure should also consider those conditions that are on the path leading

to the target condition. This idea can be expressed in the following example.

In Figure 3, two test cases, t, and t_, pass through the false branches of conditions 1, 2,

and 3, of Figure 2a. Assume the goal is to generate more cases to cover the truth branch of

condition 3. Either t, or tb should be used as the model for the new cases. If the whole input

space is represented as R, it can be divided into several subspaces (see Figure 3). First, R is

divided into IT and IF, which represent the portions of input space that drive the truth and false
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branches of condition 1, respectively. Similarly, 1F can be divided into 2T and 2F, and 2F can

be divided into 3T and 3F.

In this example, both t. and tt, fall within the subspace of 3F. A best test case must be

selected between t, and h, for new case generation. According to the earlier definition, the

goodness is related to the distance that each test case is from the boundary of 3T and 3F. Based

on this definition, t. is closer to the boundary so it should be chosen as the best test case. From

the viewpoint of condition 3, this is correct. A relatively small modification to t. may lead to 3T.

However, t, is also close to the boundaries of conditions 1 and 2. There is a good chance that

a slight modification to t. may lead to undesired branching at conditions 1 and 2.

We will call the modification magnitude that is required to drive a different branch at a

condition the freedom space of a test case. In this example, t, has a small freedom space at

conditibn 3 which is desirable. But its freedom spaces at conditions 1 and 2 are also small,

which may cause unanticipated branchings easily. On the other hand, although t0 is not as close

to condition 3's boundary as t, is, it is not close to any other boundaries either. A larger

modification may be required for h, to lead to 3T. Since h, is far away from any other

boundaries, a larger modification may not cause any unanticipated branches. For this reason, the

goodness of a test case conceming a target condition should be determined by the freedom space

at the target condition as well as the freedom spaces of all conditions that are on the path to the

target condition. For the former element, the smaller the better; for the latter element, the larger

the better. The goodness can now be redefined as:

G(t,D) = w * L(t,D) + (l-w) * P(t,D) (2)

where:

G(t,D) • Goodness of test case t at condition D.



L(t,D) : Freedom space of t at D.

P(t,D) : Sum of freedom space reciprocals of t along the path toward D.

w : Weighting factor between L(t,D) and P(t,D), 0 < w < 1.

L(t,D) is defined as in formula (1), and P(t,D) is def'med as:

P(t,D) = 3". 1 ] (n*L(t,Di))

all D t

(3)

Here, D l is a condition that is on the path toward D, and n is the total number of these

conditions. Although this definition does not represent the actual distance of test case t to a

boundary, it is a reasonable approximation. With this definition, the smallest value indicates the

best test case. Although formula (2) seems more appropriate than formula (1), it would be

difficult to prove it theoretically. Both definitions are derived heuristically.

3.2 TEST CASE GENERATION PROCEDURE

The basic idea of new case generation is to modify the best test case of a target condition

slightly with the intent to drive the uncovered branch of the condition. In Figure 4, input to the

procedure contains three parameters x, y, and z. Assume condition D's truth branch is covered,

and its best test case is (x t, Yt, zt)- More cases must be generated to cover D's false branch.

Condition D can be expressed as LHS(x, y, z, v t, v 2, ...) <op> RHS(x, y, z, v t, v 2, ...). Here,

v t,v2,.., are internal variables of the procedure. Input parameters x, y, and z may or may not be

modified between the entry point and condition D. The following sections discuss some

approaches that have been used to generate new cases.

3.2.1 INCREMENT AND DECREMENT MODIFICATION

This method increments and decrements each parameter of the best test case with a fixed

percentage of each parameter's ranges. The percentage can be any one of or any combination
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of 1%, 10%, 20%, 40%, etc. For example, if the best test case is (x I, Yt, zt) and the ranges for

input variables x, y, and z are [0 10], [-100 0], and [-50 50] respectively, a 1% increment and

decrement would generate new cases like (xt+0.1, yl+l, zt+l) and (xt-0.1, y_-l, zt-1).

3.2.2 BOUNDARY COMPUTATION

This approach finds the boundary that separates the truth and the false values of a

condition, say D. It then tries to modify the best case to cover both sides of the boundary. Since

the branching of D can only be extemally controlled by input parameters, the condition boundary

should be defined for x, y, and z. For example,

x b=fl (y,z,v t,v 2,...)

Yb "- f2 (X, Z, Vl, V2, ...)

= f3 (x, y, v t, v2, ...)

These boundary equations can be derived from D using symbolic manipulation. For

example, given a condition

x+ 3*y =< 4-6*z+v

The condition boundary will be

_=4-6*z+v-3*y

y_=(4-6*z+v-x)/3

_=(4-x-3*y+v)/6

Remember that the new case generation should be based on the best case, (x_, Yt, zl), and

the modification should be as small as possible. A simple strategy would be to modify only one

variable at a time. For example, we can modify x and keep y and z unchanged. In order to

compute the boundary value of x at D, the actual values of y, z, v_, v 2, ... just before D should

be used in the computation. The computation provides the desired boundary value of x at

condition D, say _. Three new cases can be generated to cover both truth and false branches:

8
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(_, y_, zt), (_+e, y_, zt), and (x:e, y_, z_). Here, e is a small positive number, e.g., e = (range

of x) / 100.

Up to this point, it is assumed that x (or y or z) would not be modified between the entry

point and condition D. This may not be valid at all. If an input parameter is modified by the

program before reaching the target condition, the precise computation of the boundary may lose

its purpose. The question becomes: what can be done if an input parameter has been modified?

If the desired boundary value of x at condition D is xt,, this value must be inverted back through

the path that leads to condition D. Through this inversion, the value of x at the entry point can

be found. However, this is a complex path predicate problem which does not have a general

solution [PRA87].

Consider the following situation. The input value of x is x_, the actual value of x just

before condition D is x_. Assume x has been modified before reaching D and the boundary value

of x at D is x b. We might surmise that input x should be changed from x_ to an unknown value

x u such that, just before reaching D, x will be changed from x c to _. Since we do not know how

x is modified along the path, precise modification to x at the entry point cannot be computed.

However, an approximation can be derived. At condition D, the desired value of x is _ and the

provided value is x c. We may consider x_ is off the target, i.e., the condition boundary at D, by

the following percentage:

I_ - xcl / (2*MAX(I_I, Ix¢l)) * 100 % (4)

Following this measurement, we can modify input x based on this percentage.



4. IMPLEMENTATION AND RESULTS

The framework prototype is designed to process Ada source code and is implemented on a

SUN SPARC station using the C language and CLIPS [CLI87], an expert system building tool.

Currently, the parser/scanner is used only to generate the code structure file for the test case

generator. Since the code instrumentation is a compiler oriented task which is not the major

concern of this research, the code is manually instrumented. However, we are now in the process

of automating the code instrumentation process using a DIANA interface package [DIA90] for

the Verdix Ada Development Systems.

The prototype handles only a Pascal-like subset of Ada. Only subprogram input

parameters are considered as input to the unit under test, and input is restricted to integer and

float data types. The system has been tested on various Ada programs. We present the results

of running the prototype system on two such Ada programs. More results can be found in

[BRO90].

Figure 5a shows the fast test program graphically pretty-printed with a control structure

diagram [CRO89]. Figure 5b shows the condition branching graph that can be abstracted from

this control structure diagram. In order to experiment with rule sets reflecting various testing

strategies, and to provide a basis for comparing these strategies, rules were grouped into the

following categories.

A. Rules that produce new test cases by making random changes to the values of the

input variables. These rules produce random values within the range of the type of the input

variables. These values are independent of any previous test cases.

B. Rules that take the best test cases for conditions and generate new test cases by
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incrementing and decrementing the input variables by a percentage. For results reported here,

the rules increment and decrement input variables by 40% of their value rather than a percentage

of their range as discussed in section 3.2. i.

C. Rules that symbolically evaluate values of input variables at condition boundaries and

generate new values for input variables that are clustered around these boundaries. These rules

implemented the ideas that were discussed in section 3.2.2. The rule set used in these tests did

not take into account conditions in the execution path leading to the target condition and it's

associated best test case, but utilized only information about the boundary value of the target

condition and generated new test cases as follows.

Given a condition, the best test case for that condition, and an input variable, the value

of the variable at the boundary was symbolically determined. Then keeping the other input

variables ftxed, new test cases were generated by supplying the boundary value of the input

variable as input. Additionally, this value was incremented and decremented by a small amount

to provide two other test cases. These rules were applied to each input variable appearing in the

condition.

For each of the above rule strategies, Figure 6 shows the results of execution of the

prototype. The table reports the test cases for which one of the three strategies found new

branches in the Ada program. Because all three rule sets were initialized with the same initial

test cases, the f'trst test case covered the same path through the code. On the third test case, for

example, the table shows that random test case generation rules found another path through the

code adding three more branches to the number of branches covered by this rule set. Figure 7

graphically presents the information from the table with the y axis showing what percentage of
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the 20 brancheswere coveredby the testcases. Oneshouldnote that the x axis is not a linear

scale,andassuchthe graphdoesnot accuratelyreflect the relativespeedwith which maximum

coverageis achieved.

Figures 8a and 8b show the sourcecode andthe flow graph for the secondAda test

program,respectively,andFigure9 theresultsof thethreetestingmethods. In this test,complete

branch coverage was achieved by the symbolic evaluation rule set in 21 test cases. The

increment/decrement rule set found the f'mal branch on the 87th test case, and random test case

generation was considerably worse.

In these test programs, the rule-based testing based on heuristic rules, which reflects

increment/decrement or symbolic evaluation strategies, outperformed random test case generation.

The symbolic evaluation strategy outperformed the increment/decrement strategy in these two

_xamples. But when external functions are called by the test programs (not shown here), the

symbolic evaluation strategy appeared to be slightly behind the increment/decrement strategy.

The reason is that the symbolic evaluator has no idea what the functions do, so it is unable to

successfully determine a branching condition.

5. CONCLUSION

A framework of generating test cases for software branch coverage using heuristic rules has

been described. Major framework components include a parser/scanner, a test case generator,

a test case analyzer, and a report generator. The parser/scanner instruments a source code and

constructs a structure file for the code. The test case generator produces test cases based on

heuristic rules and previous coverage and cases. Test case generation always tries to cover some

partially covered conditions. The test case analyzer runs new cases in the instrumented code and

12



performs coverage analysis and test case goodness evaluation. The report generator integrates

the coverage information and prints test results in table-like forms. By combining coverage

analysis techniques, test case goodness evaluation methods, and a rule-based approach, more

efficient test case generation can be achieved.
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*** GRASP/ADA VI.0 File: testl.a.csd Page:

with text io, instrumentation;

use text___o;

_rocedure testl( w: in out integer; x:

z: in out integer) is

in out integer: y:

I function ( a : integer) return integer isuser f

temp: integer;

]begin

_-- temp :- a / 100;

4-]--- return (temp) ;
Lend user_f;

begin

if x > 5 then -- 1

hnile x > 5 ioop -- 2

x :" x - 256;
z :- z + I0;

d loop;

elsif x - 1 then -- 3

<xthen-- 4:" z + 20;

:- x - 1000;

end if;

_ : < -I00 then -- 5
: x + user_f (z) + y;

s! .. z + i00;• :- user f(z) * y;

end if;

else

-- x :- user_f(z) * y;

end if;

f y < 300 then -- 6
i :m z * 2;

:m X * 9;

S

:" z *-3;

:- x * 12;

end if;

if 2 * y + Z + 6 then -- 7
if w > 100 then -- 8

-- x := x + 10;

__el_ ; > 90000 then --

:- y + 2 - 100;

s; :- Y + 2 - 100;

end if;

else

-- x :- user f(y) + z;

b " end if;

_elsif y > 10000 then

I I_ Y :" Y - I0000;

Lende;. s  ;

-- 10

in out integer;

Figure 5a Ada Source Code for Test Program 1
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Figure 5b Flow Graph of the First Test Program
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Figure 6 Result for the First Test Program in Table Form
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*** GRASP/ADA Vl.0 File: test2.a.csd Page:

with text_io, instrumentation;

use text_io;

procedure test2( x: in out integer; y:

is

in out integer; z:

tl, t2 : integer;

function user_f( a : integer) return integer is

temp: integer;

begin

temp :- a / I00;

return (temp);

end user f;

begin

x :- x - i00;

tl :- y - I00;

t2 :- z - i00;

while x > 1 loop -- 1

x - z - 2000;

if iYf< 10 then -- 2
- y > -5 then -- 3

--y :- y + t2;

-- loop

-- z :- z + abs (y);

-- tl :- 2 * y;

.._eilfs_ >.19950 then -- 4

end if;

-- z :- z - 1000;

4- -- exit when z > 20000; -- 5

end loop;

else

_ _ > -20 then -- 6
: z - 10000;

I

jI " -- z 20000;

t
I end if;

end if;

end if;

y :- x + z + user_f(t2);

z :- user..f(y) + user__f(tl);

end loop;

if y < I00 then -- 7

y :- y + i00;

end if;

test2;

in out integer)

Figure 8a Ada Source Code for Test Program 2
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Figure 8b Flow Graph of the Second Test Program
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ABSTRACT

Test data generation using traditional software testing methods generally requires

considerable manual effort and generates only a limited number of test cases before

the amount of time expended becomes unacceptably large. A rule-based framework

that will automatically generate test data to achieve maximal branch coverage is

presented. The design and discovery of rules used to generate meaningful test cases

are also described. The rule-based approach allows this framework to be extended

to include additional testing requirements and test case generation knowledge.
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1. INTRODUCTION

Program testing methods can be classified as either dynamic analysis, static

analysis, or a combination of these [RAM75]. Dynamic analysis of a program

involves executing the program with test cases and analyzing the output for

correctness, while static analysis includes such techniques as program graph analysis

and symbolic evaluation. A dynamic test strategy is a method of choosing test data

from the functional domain of a program.

the functional description of a program,

It is based on criteria that may reflect

the program's internal structure, or a

combination of both [ADR82]. These criteria specify the method of test case

generation to be used for a dynamic test strategy.

Generating test inputs to a program may not appear to be a difficult problem

since it may be done by a random number generator [DUR81]. However, random

testing alone has been shown to be an inadequate method for exposing errors. When

combined with extremal and special value (ESV) testing, it can be an effective

method and can provide a direction for the generation of future test cases [VOU86].

On the other hand, "algorithms for generating test data to satisfy particular adequacy

criteria have generally poor time and space complexities and produce small amount

of test data.

The objective of this research is to design and develop a framework that will

automatically generate test data to achieve maximal branch coverage of an arbitrary

program. Also included is the design and discovery of rules that can be used to



generate meaningful test cases. A rule-based approach allows this framework to

be extended to include more testing requirements and test case generation knowledge.

2. FRAMEWORK

The outline of the framework is shown in Figure 1. It is divided into four

major components: parser/scanner, test case generator, test case analyzer, and report

generator. For simplicity, examples have been restricted to IF-THEN and IF-THEN-

ELSE statements with conditions of single expressions.

2.1 PARSER�SCANNER

The purpose of the parser/scanner is to instrument the input source code and

create a file containing information about the input code's structure. The

instrumented code is used by the test case analyzer to analyze the coverage of the

code. The structure file provides the test case generator information about the code

so that test cases can be generated accordingly.

The instrumentation of the code is done by inserting a function call into the

condition part of af_ IF-THEN statement. For example, statement IF (8*Y-4*X+5)

>- (5-Z) THEN do-1 ELSE do-2 will be instrumented as IF analyze((8*Y-4*X+5)

>= (5-Z)) THEN do-1 ELSE do-2. "Analyze" is a function defined in the test case

analyzer. It calculates and returns the truth value of the condition to the statement.

This keeps the performance of the original code unchanged. However, in this

process "analyze" also performs coverage analysis and other evaluation tasks (see

2



the section of test case analyzer).

The structure file contains information about input parameters and

conditions/branches of the code. For each input parameter, its data type and range

are recorded. An IF-THEN statement is recognized as IF LHS <op> RHS THEN

do-1 ELSE do-2, where RHS and LHS stand for right-hand-side and left-hand-side

of the condition expression respectively. "<op>" denotes a logical operator such

as <, >, -, =<, >=, or <>. In addition to RHS, LHS, and <op>, information about

parameters that appear in the LHS and RHS is also included in the structure file.

This information is represented as facts so a knowledge-based test case generator

can access it easily.

2.2 TEST DATA GENERATOR

The test data generator produces new test cases that are intended to cover the

branches associated With conditions in the code. It takes coverage results from the

analyzer and code information from the structure file and determines what

conditions/branches should be targeted for new case generation. It then uses test

case generation rules to generate more test cases. When a set of new cases is

generated, it is stored in a test case f'de. The test case analyzer will then run these

test cases in the instrumented code and record the cumulative coverage of conditions

and branches. The coverage and other evaluation results are then fed back to the

test case generator for further case generation. The test case generation and analysis

cycle is repeated until a predefined coverage is reached or a certain number of test

3
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cases has been generated. In addition to this regular test case generation, a test

case generator also may be used to generate initial cases as indicated in Figure 2.

If the user provides initial cases, this step can be skipped and the test case analysis

can be started immediately; otherwise, the test case generator has to generate initial

cases to start the cycle. They can be generated by either random number generation

methods or simple heuristics. One heuristic is to assign each input parameter to

its mid-range, lower-bound, and upper-bound. This heuristic would give three

initial cases. For example, if the input parameters are (x y) and the ranges for x

and y are [0 100] and [-10 0] respectively, the three cases will be (50 -5), (0, -10),

and (100, 0).

2.3 TEST CASE ANALYZER

The test case analyzer runs the new test cases in the instrumented code, records

the branch coverage, and evaluates the "goodness" of each test case. The analysis

result is then fed back to the test case generator for further case generation. When

the test case generation and analysis cycle is terminated, an analysis report is

generated.

The coverage recording task is a simple table filling process which keeps track

of what conditions have been fully, partially, or not yet been covered. The test

case generator uses this information to select a target branch to generate more

cases. A "goodness" value is used to select a test case from a set of test cases that

drives the code in a particular way. This selected test case will be used as a model
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for further case generation. Detailed discussion is given in a later part of the paper.

2.4 REPORT GENERATOR

When the test case generation and analysis cycle is completed, the report

generator will print the results for the user. The information to be included in the

report can be specified by the user. These include test cases, condition and branch

coverage, and statistics of the cases and coverage.

The report generator and the parser/scanner involve mechanic types of

processings. Although the effort required to implement these two components is

great, technically they are well understood. Detailed discussion of these two

components can be found in [-BRO89]. The remainder of this paper will provide a

detailed discussion of the methodologies used for test data generation and analysis.

3. TEST DATA GENERATION STRATEGY

The objective of the Test Data Generation (TDG) component of the testing

methodology is to achieve maximal branch coverage. In order to ensure the

direction of test case generation is fruitful, a branch coverage analysis is needed.

The coverage analysis of this framework follows the Path Prefix Strategy of Prather

and Myers [PRA87].

simplified flow chart.

coverage table.

In this strategy, the software code is represented as a

The branch coverage status of the code is recorded in a

When a branch is driven (or covered) by any test case, the

5



corresponding entry in the table is marked with an "X". Figures 3a and 3b indicate

a sample flow chart and its coverage table. The goal of the test case generation is

to fill all the entries in the table, if possible.

The coverage table provides not only information regarding the branches

covered but also direction for further test case generation. Consider Figures 3a and

3b. Currently, conditions 1 and 2 are fully covered; conditions. 3, 4, and 5 are

partially covered; and condition 6 is not covered. Since conditions 1 and 2 are fully

covered, there is no need to generate more cases to cover them. Condition 3, on

the other hand, is partially covered. More cases should be generated to drive its

false branch, i.e., 3F, which is not yet covered. The Path Prefix Strategy states that

new cases can be generated by modifying a test case, say case 3T, that has driven

3T. Consider the fact that case 3T starts at the entry point and reaches condition

3. Although it drives 3T, it is "close" to driving 3F. Slight modification of case

3T may devise some new cases that will drive 3F.

With this strategy in mind, the test case generator should target partially

covered conditions. Earlier test cases can be used as models for new cases.

Conditions that have not been reached yet, e.g., condition 6 in Figure 3b, will not

be targeted for new case generation. This is because no test case model yet exists

that can be used for modification. A test case model will eventually surface later

in the process, and in this example, after condition 5 is fully covered, a model for

condition 6 will appear.
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3.1 BEST TEST CASES

Problems arise when there is more than one test case driving the same path.

For example, if cases 1, 2, ..., n all drive branch 3T of Figure 3b, then the selection

of the case to be used as the model for branch 3F becomes problematic. If all cases

are used, efforts are likely to be duplicated, which is not efficient. Since an

automatic case generator can generate a large amount of. cases, it is necessary to

quantify the "goodness" of each case and use the "best" case as the model for

modification.

The objective of modifying the model (or the best) test case is to generate a

new case which will cover the uncovered branch of the targeted condition. For this

reason, the selection of a best test case will directly affect the success of test case

generation. Consider the typical format of an IF-THEN statement: IF exp THEN

do-1 ELSE do-2. The evaluated Boolean value of exp determines the branching.

Exp can be expressed in the form of: LHS <op> RHS. LHS and RHS are both

arithmetic expressions and <op> is one of the logic operators such as <, >, <-, >=,

The goodness of a test case, tl, relative to a given condition can be<>, and =.

defined as

I LHS (tl) - RHS (tl) I/MAX ( I LHS (tl) I, I RHS (tl) I ) (1)

LHS(tl) and RHS (tl) represent the evaluated value of LHS and RHS,

respectively, when tl is used as the input data. This measure tells the closeness

between LHS and RHS [DEA90]. When this measure is small, it is generally true
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that a slight modification of tl may change the truth value of exp, thus covering the

other branch. The importance of slight modification to a model test case is based

on the fact that the model case starts from the entry point and reaches the condition

under consideration. Between the entry point and the condition, the modified cases

generally must pass through exactly the same branching conditions and yield the

same results. For this reason, the smaller the modification is, the better the chance

will be for a modified case to stay on the same path [PRA87]. The given closeness

of LHS and RHS provides a way of measuring this goodness.

The goodness measure of (1) may range from 0 to 2. It can be normalized

so that the measure will range from 0 to 1. This is done by dividing equation (1)

by 2. The new definition will be

I LHS (tl) - RHS (tl) I / ( 2*MAX ( I LHS (tl) I, I RHS (tl) I )) (2)

With this definition, a test case that yields the smallest measurement is

considered to be the best test case of the condition under consideration.

The closeness measurement of (1) and (2) has a serious risk, however. Recall

that a set of new test cases is generated based on the best test case of a partially

covered condition (called target condition), and the intent of the new test case set

is to cover the uncovered branch of the target condition. Although we define the

slightness of modification of a test case as its goodness, this measure is computed

based on the target condition only. A slight modification to the LHS and RHS of

the target condition may not have the same meaning to those conditions on the
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path. This may result in what we will call unanticipated branchings along the path,

that is, a flow of control that may no longer reach the condition under test. In order

to reduce the likelihood of unanticipated branching, a test case's goodness measure

should also consider those conditions that are on the path leading to the condition.

This idea can be expressed in the following example.

In Figure 4, two test cases, t. and tb, pass through the false branches of

conditions D t, D 2, and D3. Assume the current effort is to generate more cases

such that the truth branch of Dj will be covered. Either t. or tb should be used as

a model for the new cases. If the whole input space is represented as R, the input

space can be divided into several subspaces (see Figure 4). First, R is divided into

IT and IF, which represent the portions of input space that drive the truth and false

branches of D t respectively. Similarly, 1F can be divided into 2T and 2F, and 2F

can be divided into 3T and 3F.

In this example, both t, and tb fall within the subspace of 3F. If we want to

drive the other branch of D3, new cases should come from the subspace of 3T. A

best test case must be selected between t. and tb. According to the earlier definition,

goodness is the distance that each test case is from the boundary of 3T and 3F.

Based on this def'mition, t, is closer to the boundary so it is chosen as the better test

case. From the viewpoint of D 3 this is correct. A relatively small modification to

t, may lead to 3T. However, t, is also close to the boundaries of D, and D2, so

there is a good chance that a slight modification to t, may lead to undesired
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branches at D_ and D2.

We will call the magnitude of modification that is required to drive a different

branch at a condition the freedom space of a test case. In this example, t, has a

small freedom space at D3 which is desirable. But its freedom spaces at Dt and D2

are also small, which may cause unanticipated branchings. On the other hand,

although tb is not as close tO D3's boundary as t, is, it is not close to any other

boundaries either. A larger modification may be required for tb to lead to 3T. Since

tb is far away from any other boundaries, a larger modification may not cause any

unanticipated branches. For this reason, the goodness of a test case concerning a

particular condition should be determined by the freedom space at the target

condition as well as the freedom spaces of all conditions that are on the path to the

target condition. For the former element, the smaller the better; for the latter

element, the larger the better. The goodness can now be redef'med as:

where:

G(t,D) --- w * L(t,D) + (l-w) * P(t,D) (3)

G(t,D) : Goodness of test case t at condition D.

L(t,D) : Freedom space of t at D.

P(t,D) : Sum of freedom space reciprocals of t along the path toward D.

w : Weighting factor between L(t,D) and P(t,D),
0<w<l.

L(t,D) is defined in equation (2), and P(t,D) is defined as:

P(t,D) = _ 1 / (n*L(t,Di)) (4)

Di
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Here, Di is a condition that is on the path toward D, and n is the total number

of these conditions. Although this def'mition does not represent the actual distance

of test case t to a boundary, it is a reasonable approximation. According to this

definition, the smallest value indicates the best test case.

Although formula (3) seems more appropriate than formula (2), in terms of test

case goodness measurement, it would be difficult to prove it theoretically, since both

definitions are derived heuristically.

When a test case is run in the test case analyzer and it reaches a condition

that is either partially covered or not covered at all, its goodness value is computed.

This value is then compared with the goodness value of the current best case, if

there is one. If its value is smaller, this test case replaces the original case and

becomes the new best case. In the implementation, the test case analyzer actually

keeps more than one test case for each partially covered condition. That is, the

second, the third, and the fourth best cases are also kept. This provides alternatives

for the test case generator when the original model does not yield new coverage.

3.2 TEST DATA GENERATOR PROCEDURE

When a new test case is generated, it is intended to cover a particular branch.

This intended branch always belongs to a partially covered condition, except in the

very beginning of test case generation. Based on the best test case of a targeted

partially covered condition, a slight modification to the case is made with the intent

to lead the execution to the uncovered branch of the target condition. The
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importance of "slightness" is to keep the new test case following the original

execution path with the exception resulting in the target condition. The main issue

in the research has been the establishment of methods for efficiently performing this

modification.

For example in Figure 5. Input to the procedure contains three parameters x,

y, and z. Assume condition D is partially covered, its best test case is (xz, Yt, zf),

and we need to generate more cases to cover D's false branch. Condition D can be

expressed as LHS(x, y, z, v_, v: .... ) <op> RHS(x, y, z, vt, v2, ...). Here, vt,v2,...

are internal variables of the procedure. Input parameters x, y, and z may or may

not be modified between the entry point and condition D. In this case, if test case

(xt, Yt, Zl) is input into the procedure, the evaluation of D will result in a truth

value. The following sections discuss some heuristics that can be used to generate

new cases.

3.2.1 FIXED PERCENTAGE MODIFICATION

One way of generating new cases is to modify each parameter of the best test

case with a fixed percentage of each parameter's ranges. The percentage can be any

one of or any combination of 1%, 3%, 5%, 10%, etc. For example, if the best test

case is (xt, Yl, zt) and the ranges for input variables x, y, and z are [0 10], [-100

0], and [-:50 50] respectively, a 1% modification would generate two new cases.

They are (xt+0.1, y,+l, zt+l) and (x,-0.1, yt-l, zt-1). Several different combinations

can be used at the same time. This would provide more new cases. After a new
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case is generated, it must be checked to ensure that each variable is within its range.

3.2.2 RANDOM MODIFICATION

This method modifies the best test case in a random way, i.e., the modification

percentage is random. Each new case must be checked for its validity before it is

stored. Random modification can be done in several ways. That is, in each new

case, one or several variable can be modified. Combinations of these modifica-

tions provides more cases and may cover more branches.

3.2.3 MODIFICATION BASED ON CONDITION CONSTANTS

This method generates new cases based on the constants appearing in a

condition. Depending on the number of constants in a condition, different rules can

be applied. For example, if there is one constant and one input variable in a

condition, then generate a new case by putting the constant in the position of the

input variable in the best test case.

x <op> C, where C is a constant.

This rule is designed for conditions of the form:

Similarly, for two constant conditions, e.g., x+C_

<op> Ca, three new cases can be generated. They are Ct+ca, Ct-ca, and Ca-C1.

Rules for conditions with more constants have similar forms. These rules, developed

by DeMillo, Lipton, and Sayward [DEM78], and Howden [HOW87], were intended

originally to be applied in manual test case generation. Implementation of this kind

of heuristic has been reported in a separate paper [DEA90], in which these rules

are represented in Prolog. Performance of this approach shows a significant
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improvement over randomly generated test cases.

3.2.4 BOUNDARY COMPUTATION

Another approach to new test case generation is to determine the boundary

that separates the truth and the false values of a condition, say D. Effort is then

directed to modify the best case to cover both sides of the botmdary. Since the

evaluation of D can only be externally controlled by input parameters, say x, y, and

z, a meaningful way of expressing the boundary would be defining it in terms of x,

y, and z. For example,

x_ = fl (y,z,vl,v 2, ...)
y_ = f2 (x,z,v_,v_, ...)

z_ = f3 (x,y,v_,v_, ...)

This set of expressions defines the Condition boundary of D for x, y, and z.

They can be derived from D using symbolic manipulation. For example, if we have

a condition

x+ 3*y -< 4-6*z+v

The condition boundary will be

xb -- 4-6_z+v-3*y

Yt, = (4-6*z+v-x)/3

z, -- (4-x-3*y+v)/6

Remember that new test case generation should be based on the best case (x,,

y_, zt) and the modification should be as small as possible. A simple strategy would

be to modify only one variable at a time. For example we can modify x and keep

y and z unchanged. In this case, the condition boundary expressed for x should be
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used, i.e., xb -- fl (y,z,vl,v2, ...). In order to compute the desired value of x at D,

use the actual values of y, z, vl, v2, ... just before D is evaluated. The computation

provides the desired boundary value of x at condition D. Three new cases can be

generated to cover both truth and false branches: (xb, Yl, z0, (Xb+e, y_, Zt), (Xb-e, Yt,

Z_). Here, e is a small positive number, e.g., e --- (range of x) / 100. Similarly, this

case generation procedure can be applied to variables y and z.

In this procedure, it is assumed that x (or y or z) would not be modified

between the entry point and condition D. This may not be valid at all. If an input

variable value is modified by the program before reaching the target condition, the

precise computation of the boundary may lose its purpose. Whether an input

variable has been modified or not can be checked easily. For example, if (x_, y_,

z_) is a test case of the procedure and (x_, y,, zc) are the actual values of x, y, and

z just before condition D is executed, input variable modification can be checked by

comparing these two sets of values. If a variable, e.g., x, has not been modified,

i.e., x t - xo, then the computed condition boundary, xb, can be used directly for new

case generation. This can be represented in a rule, such as:

IF x t -- x_

THENgenerate three new cases

(xb, y,, z,),
(x_+e, y,, z,),

(xb-e, y,, z,).

Rules for other input variables would have the same form.

Now, the question becomes: what can be done if an input variable has been
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modified, i.e., the ELSE part of the rule? If the desired boundary value of x at

condition D is xb, this value must be inverted back through the path that leads to

condition D. Through this inversion, the value of x at the entry point can be found.

However, this involves a complex path predicate problem which does not have a

general solution [PRA87]. Heuristic approaches toward solving this problem will be

presented below.

Consider the following situation. The input value of x is xi, the actual value

of x just before condition D is xc, and xi <> xc. This means variable x has been

modified before reaching D. Assume the condition boundary of x at D is xb. In

this case, we might surmise that input x should be changed from x_ to an unknown

value x_ such that, just before reaching D, x will be changed from x_ to xb. Since

we do not know how x is modified along the path, precise modification to x at the

entry point cannot be computed. However, an approximation can be derived. At

condition D, the desired value of x is Xb and the provided value is x_. We may

consider x_ is off the target, i.e., the condition boundary at D, by the following

percentage:

IXb - X_I [ (2*MAX(Ixbl, Ix_l)) * 100 %

Formula (5) is identical to (2) but has a different interpretation.

this measurement, we can modify input x based on this percentage.

(5)

Following

One more

question needs to be answered: how should the amount of modification of x be

defined? For example, if we want to modify x by 12% and x_ = 10, the answers
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should not be simply 11.2 or 8.8. This is because the input space of x may be

something like [-1000, 200]. Percentage based on xi may not reflect the input space

of x at all. The proposed calculation is to use the input range size of x, i.e.,

[upper_limit of x - lower_limit_of_x], as the basis. In this example, the range size

of x is 200-(-1000) = 1200, and the new boundary values for x would be 10+144

- 154 or 10-144 - -134. The values of x for new test cases should result

conditions

boundary.

in

which are slightly off the boundary as well as those right on the

If we vary x by one percent of x's range, i.e., e = 12, six new cases can

be generated. In this example, while all other variables remain unchanged, new

values for x will be 142, 154, 166, -146, -134, and -122. This heuristic can be

integrated into the earlier rule to yield:

;no modification

;modification along path

IF x, = x_

THENgenerate three new cases

(x_, yj, z,),

(_+e, y_, zt),

(x_-c,Yl,z0.

ELSE compute boundary value, xb,

compute off targetpercentage using (5),

approximate input boundary values using (6),

generate new cases for being on or slightlyoff boundary.

x_ + Ixb - xcl / (2*MAX(Ixbl, Ix_i)) * (x,,,_,, - x,_,,,,) (6)

Another possible way of approximating the input boundary value is to assume

a linear relationship between xc and xi. In this situation, the approximated boundary

value for x at the entry point would be xb*xJxc. Three new cases can be generated

17



for being "on or slightly off the boundary.

In this section, several heuristic ruIes have been presented. It is likely that

each rule is effective in certain situations. If several rules are applied to a program,

they will complement each other and yield better coverage.

4. IMPLEMENTATION

The current prototype testing system is designed to process Ada source code

and is implemented on a VAX-780 using the C language and CLIPS [CLI87], an

expert system building tool which is written in C. Currently, the parser/scanner

is used only to generate the code structure file for the test case generator. Since

the code instrumentation is a compiler oriented task which is not the major concern

of this research, the code is manually instrumented. However, we are now in the

process of automating the code instrumentation process. The code information

generated by the parser/scanner is stored as CLIPS facts in a f'de. Examples of

facts are shown below.

(varl 2 x y)

(exp 1 1 x "+" y)

(exp 1 r 2 "*" x "*" y "-" 10)

(v 1 I 1 100)
(v 2 I -5 20

;variable list

;LHS expression of condition 1

;RHS expression of condition 1

;type and range of 1st variable

;type and range of 2nd variable

The test case generator is written in CLIPS which uses production rules.

CLIPS was selected because it provides a fully integrated environment for C. Rules
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for the fixed percentage and the random modifications have been implemented.

Boundary and symbolic computation rules are being added to the system. As an

example, a fixed percentage modification rule is shown below.

;this rule uses the best test case associated with a condition,

;and for n input variables, generate n test cases by altering

;each variable one percent of its range.

(defrule generate._increment_by_one_percent_test_cases

(types $?type_list)

(low_bounds $?low_bounds_list)

(highbounds $?high_bounds_list)

;match any condition that is only half covered

(coverage_table ?decision ?condition truelfalse)

;get the best test case for each condition

(best_test_case ?decision ?condition $?values)
=>

(bind ?outer._pointer 1)

(while (<= ?outer_pointer (length $?values))

(bind ?test_number (test_number))

(format test-case-file " %d" ?test__number)

(bind ?inner_pointer 1)

(while (<= ?inner_pointer (length $?values))
(bind

(bind

(bind

;increment the

;its range

(bind

(bind

till

?type (nth ?inner_pointer $?type_list))

?high_bound

(nth ?inner_pointer $?high_bounds_list))
?lowbound

(nth ?inner_pointer $?low_bounds_list))

current variable by one percent of

?one_percent (! (- ?high_bound ?low_bound) 100))
?increment

(+ (nth ?inner_pointer $?values) ?one_percent))
;if this is the variable we want to alter

(if (= ?outer_pointer ?inner_pointer) then
(if (<= ?increment ?high_bound) then

(bind ?test_value ?increment)
else

(bind ?test_value ?low_bound))
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else

;and the other variables are written as is

(bind ?test_value (nth ?inner_pointer $?values)))

(if (eq ?type int) then

(format test-case-file " %d" ?test_value))

(if (eq ?type fixed) then

(format test-case-file " %f' ?test_value))

(if (eq ?type float) then
(format test-case-file " %e" ?test_value))

(bind ?inner_pointer (+ ?inner_pointer 1)))

(fprintout test-case-file crl 0

(bind ?outer_pointer (+ ?outer_pointer 1))))

The test case analyzer, written in C, runs each test case from the test case file,

evaluates goodness values for each case, and records the coverage. It is designed

in a way that the def'mition of test case goodness can be selected by the user.

The report generator, written in C, provides a listing of test cases and statistics.

An example of a statistical printout from the prototype is shown below.

***********************************************************

QUEST CUMULATIVE COVERAGE REPORT

-- # of decision: 8

-- # of decision fanouts: 16

-- # of fanouts hit: 15

-- Decision coverage: 93%
-- Decisions not hit: 4T

-- Condition not hit:

;total condition number

;total branch number

;branches hit

;decisions not hit

;conditions not hit

-- Decision: I

-- Evaluated true: 1165

-- Evaluated false: 155

;number of times 1T is hit

;number of times 1F is hit
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Current effort of the framework development is to test more programs and

collect performance statistics. Form the statistics, performances of various goodness

evaluations and heuristic rules will be compared to determine their effectiveness.

5. CONCLUSION

A framework of generating test cases for software branch coverage using

heuristic rules has been described. Major framework components include a

parser/scanner, a test case generator, a test case analyzer, and a report generator.

The parser/scanner instruments a source code and constructs a structure file for the

code. The test case generator produces test cases based on heuristic rules and

previous coverage and cases.

partially covered conditions.

Test case generation always tries to cover some

The test case analyzer runs new cases in the

instrumented code and performs coverage analysis and test case goodness evaluation.

The report generator integrates the coverage information and prints test results in

table-like forms. By combining coverage analysis techniques, test case goodness

evaluation methods_ and rule-based approach, more efficient test case generation can

be achieved.

The contributions of this framework include the following: (1) an approach to

generate test cases from previous cases, (2) methods of evaluating test cases with

respect to a condition, (3) some heuristics for test case generation, and (4) an

extensible framework, i.e., more evaluation and heuristics can be added easily. We
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are currently running more test programs. Coverage statistics of the test runs will

provide an in depth comparison with other conventional test generation methods.
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